
PROGRAMMING MODEL AND EXECUTION MODEL FOR

OPENMP ON THE CYCLOPS-64 MANYCORE PROCESSOR

by

Ge Gan

A dissertation submitted to the Faculty of the University ofDelaware in partial
fulfillment of the requirements for the degree of Doctor of Philosophy in Electrical and
Computer Engineering

Spring 2010

c© 2010 Ge Gan
All Rights Reserved

PROGRAMMING MODEL AND EXECUTION MODEL FOR

OPENMP ON THE CYCLOPS-64 MANYCORE PROCESSOR

by

Ge Gan

Approved:
Kenneth Barner, Ph.D.
Chair of the Department of Electrical and Computer Engineering

Approved:
Michael J. Chajes, Ph.D.
Dean of the College of Engineering

Approved:
Debra Hess Norris, M.S.
Vice Provost for Graduate and Professional Education

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Guang R. Gao, Ph.D.
Professor in charge of dissertation

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Fouad Kiamilev, Ph.D.
Member of dissertation committee

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Xiaoming Li, Ph.D.
Member of dissertation committee

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Jingyi Yu, Ph.D.
Member of dissertation committee

ACKNOWLEDGMENTS

I owe my deepest gratitude to my adviser, Prof. Guang R. Gao. I started my PhD

program in CAPSL from Aug. 2004. During the last six years, Prof. Gao spent a lot

of time on my study. My research benefit a great deal from his profound learning, great

wisdom, and invaluable experience. I thank Prof. Gao for hissupport, encouragement,

and advisement which are essential for the progress I have made in the last six years.

I would not have been able to complete this work without his help. His dedication to

research and his remarkable professional achievements have always motivated me to do

my best.

I thank Dr. Ziang Hu. Dr. Hu is an excellent software engineer. He shared his

system software development experience with me and helped me a great deal in writing

this thesis.

My sincere thanks also go to numerous colleagues and friendsat the CAPSL Labo-

ratory, including Joseph Manzano, Juergen Ributzka, E.J. Park, Fei Chen, Daniel Orozco,

Haiping Hwu, Yingping Zhang, Juan Cuvillo, Sunil Shrestha, Tom St. John, Mark Pelle-

grini, Brian Lucas, Dimitrij Krepis, Handong Ye, Yuhei Hayashi, Andrew Russo, Xiaomi

An, Joshua Suetterlein. They are very smart people. It has been a wonderful experience

to work together with them.

Last and most, I thank my parents who gave me birth, raised me,and made me to

achieve this goal in education. I thank them for their unending support and confidence.

Without their support, I am not able to finish my study for PhD.

The work in this thesis was sponsored by these NSF grants: CNS-0509332, CSR-

0720531, CCF-0833122, and CCF-0702244.

iv

To Xu

v

TABLE OF CONTENTS

LIST OF FIGURES . ix
LIST OF TABLES . xiii
ABSTRACT . xiv

Chapter

1 INTRODUCTION . 1

1.1 Features of Manycore Processor Architecture - a Cyclops-64 Example . . 3
1.2 A Brief Introduction to OpenMP. 6
1.3 Problems with OpenMP. 9
1.4 Solution Methodologies. 12
1.5 Publications . 15
1.6 Thesis Organization. 15

2 BACKGROUND . 16

2.1 A Multicore/Manycore Era . 16
2.2 Programming Models for User-Managed Memory Hierarchy. 20

3 TILE PERCOLATION . 26

3.1 Introduction . 26
3.2 A Motivating Example. 28
3.3 Tile Percolation . 31

3.3.1 Programming API. 31
3.3.2 Code Generation. 34
3.3.3 Runtime Support. 38

3.4 Experiments. 41

vi

3.5 Summary. 47

4 THREAD-LEVEL DECOUPLED ACCESS/EXECUTION 49

4.1 Introduction . 50
4.2 Motivation . 52
4.3 Thread-Level Decoupled Access/Execution. 56

4.3.1 Overview . 56
4.3.2 TL-DAE Programming Interface. 57
4.3.3 TL-DAE Code Generation. 63
4.3.4 TL-DAE Runtime Support. 74

4.4 Experiments. 78
4.5 Summary. 81
4.6 Related Works. 82

5 TILE REDUCTION . 85

5.1 Introduction . 85
5.2 Motivation . 87
5.3 Tile Reduction. 89

5.3.1 Programming Interface Extension. 90
5.3.2 Code Generation. 94

5.4 Experiments. 98
5.5 Summary. 103
5.6 Related Works of Parallel Reduction. 104

6 CONCLUSIONS AND FUTURE DIRECTIONS 105

6.1 Summary and Conclusions. 105
6.2 Future Works. 106

Appendix

A DIAGRAM OF THE CYCLOPS-64 SOFTWARE TESTBED 109
B IMPORTANT TL-DAE RUNTIME ROUTINES 110

vii

C ROSE COMPILER CODE GENERATION EXAMPLE 111

C.1 Original sparseLU code with OpenMP task pragma. 111
C.2 Code Generated from ROSE Compiler with OpenMP Task Support. . . . 111

BIBLIOGRAPHY . 114

viii

LIST OF FIGURES

1.1 The IBM Cyclops-64 Manycore Processor. 5

1.2 The Cyclops-64 Memory Hierarchy. 5

1.3 OpenMP Fork-Join Execution Model. 7

1.4 Overview of OpenMP Language Extensions. 7

1.5 A piece of code that can not be parallelized very well on machines with
user-managed memory hierarchies (i.e. non-uniform memoryaddress
space) . 11

3.1 Tiled Matrix Multiplication: C = A x B 29

3.2 Examples of Manually Inserted Data Movement Code (Pseudo Code): A
naive version. 30

3.3 Examples of Manually Inserted Data Movement Code (Pseudo Code):
An optimized version . 31

3.4 The OpenMP API for tile percolation (C/C++). 32

3.5 Pseudo Code of the Tile Percolation Example. 35

3.6 Code generation example for tile percolation (Pseudo Code). 37

3.7 The runtime routines for on-chip and off-chip memory copy. 40

3.8 Experiment Results of SASUM and SAXPY: Comparison of Speedup. 44

3.9 Experiment Results of SGEMV and SGEMM: Comparison of Speedup 45

3.10 Experiment Results of EP and MG: Comparison of Speedup. 46

ix

4.1 The OpenMP Version of thesparseLUSource Code 53

4.2 bdiv: the OpenMPtaskfunction used insparseLU. 54

4.3 fwd: the OpenMPtaskfunction used insparseLU 54

4.4 The 2-level hierarchical data structure used insparseLUcode. 55

4.5 An Intuitive Approach: Synchronous Data Movement. 55

4.6 The OpenMP API for TL-DAE tile percolation (C/C++). 59

4.7 An example ofembeddeddata tile used in strassen benchmark. 61

4.8 TL-DAE API Example 1: applied on standalone data tile. 64

4.9 TL-DAE API Example 2: applied on embedded data tile. 64

4.10 Diagram of thetldae task{} structure. 65

4.11 Definition oftldae task{} . 66

4.12 Definition ofarg desc{} . 68

4.13 Code Generation Example offwd() in sparseLU: the outlined function
that creates TL-DAE tasks. 71

4.14 Code Generation Example offwd() in sparseLU: the outlined TL-DAE
task function. 73

4.15 Code Generation Example offwd() in sparseLU: the TL-DAE task
scheduling runtime function. 75

4.16 Task Queue implemented as a double-linked list. 76

4.17 1 Percolation thread and 5 computation threads and their task queues. . 77

4.18 Execution Time Comparison: w/ TL-DAE (8 percolation threads) vs.
w/o TL-DAE . 79

4.19 Speedup of under different number of percolation threads. 80

x

5.1 The Histogram Reduction Example. 88

5.2 Parallelize the Histogram Reduction Program Without Changing the
Code . 89

5.3 Parallelize the Histogram Reduction Program After Performing Loop
Interchange . 90

5.4 More Parallelization for Histogram Reduction Code. 91

5.5 The Ideal Parallelization Schema for the Histogram Reduction Code . . 92

5.6 OpenMP API (C/C++) extension and a simple example code. 93

5.7 Tile reduction: tile is part of a bigger multi-dimensional array 93

5.8 Tile reduction: upper and lower bounds are functions. 95

5.9 Pseudo code generated for the matrix multiplication example to perform
tile reduction. 97

5.10 2D histogram reduction: Comparison of the speedup and execution
time between the code parallelized with tile reduction and the code
parallelized with the standard OpenMP pragma.. 100

5.11 Matrix-matrix multiplication: Comparison of the speedup and
execution time between the code parallelized with tile reduction and the
code parallelized with the standard OpenMP pragma.. 101

5.12 Matrix-vector multiplication: Comparison of the speedup and
execution time between the code parallelized with tile reduction and the
code parallelized with the standard OpenMP pragma.. 102

A.1 Cyclops-64 Softeare Testbed. 109

B.1 TL-DAE Runtime Routines. 110

C.1 Original OpenMP task code segment from sparseLUmain function . . 111

C.2 Code Generated by ROSE Compiler with OpenMP Task Support: the
master thread code. 112

xi

C.3 Code Generated by ROSE Compiler with OpenMP Task Support: three
outlined wrapper functions of the task functions. 113

xii

LIST OF TABLES

3.1 FAST Simulation Parameters. 42

3.2 Instruction Timing of FAST Simulator 43

xiii

ABSTRACT

During the last ten years, multicore processors have matured from academic re-

search projects to real products in industry. They are now used in across almost the

entire spectrum of computer systems, ranging from huge mainframes to small handheld

devices. People consider that multicore processor represents the future of computer ar-

chitecture design [1]. Currently, we may group multicore processor chip into two types:

Type-1 and Type-2 [2]. Type-1 multicore processor has several traditional heavy weight

processing coresgluedon a single chip, like the Intel Core 2 Duo processor [3] and the

AMD Quad-Core Opteron processor [4]. Basically, the design ofType-1 multicore pro-

cessor is just a natural and conservative extension of the traditional single core processor

architecture. Type-2 multicore processor, instead, represents people’s effort to explore the

parallel architecture design space and to search for the most suitable multicore processor

design model. The IBM Cyclops-64 is a many-core processor falls in this category.

A Cyclops-64 chip has 160 homogeneous on-chip processing cores. They are

connected by a 96-port, 7-stage, non-blocking on-chip crossbar switch. The Cyclops-

64 chip does not have data cache. Instead, it has5.2MB on-chip SRAM. In addition,

2GB off-chip DRAM can be connected to the on-chip crossbar switch via four DDR2

controllers. All these memories are located in the same address space and thus are shared

by all on-chip cores. However, different memory segments have different access latencies

and different bandwidth. It is the programmer’s responsibility to orchestra data movement

among different memory segments, especially between on-chip and off-chip memory.

xiv

As we all know, it is very difficult to program a chip with many processing cores,

especially if the chip has user-managed memory hierarchies, like the IBM Cyclops-

64 many-core processor. Without considering the heterogeneity of the memory space,

Cyclops-64 is similar to the traditional shared memory SMP machine. For this kind par-

allel machine, OpenMP [5] is the dominate programming language. Although OpenMP

provides abundant directives that programmers can use themto decompose loops in a

sequential program and make it a parallel program, it provides little support to help pro-

grammers to deal with the segmented memory space. Therefore, significant problems will

arise if an OpenMP programmer wants to develop OpenMP programs on the Cyclops-64

processor. For example, the problem of manually recoding the original program to add in

data movement code; the problem of overlapping the execution of data movement code

and computation code may arise. This motivates us to developa series oftile aware paral-

lelization techniques to attack these problems. The basic idea is to enhance the OpenMP

API with the concept of data tile so programmers can use the extended OpenMP API to

annotate their programs and tell a compiler what is the shapeof the data tile and how

it would be used in the program, or where the data tiles are located etc. The purpose is

to expose more information about program data and their usage so a compiler can have

more opportunities to perform some aggressive optimizations that would not be possible

(or inefficient, or inaccurate) if without such hints from the programmers.

The major contributions of this thesis are:

• In this thesis, we introduce the concept oftile aware parallelization, an extension

to the current OpenMP. We analyze and discuss some problems that OpenMP pro-

grammers would come across on the Cyclops-64 processor. Then, we use some

motivating examples to demonstrate why tile aware parallelization techniques are

necessary and also possible to solve these problems. As far as the authors are

aware, we are the first that proposetile aware parallelizationfor the OpenMP pro-

gramming language.

xv

• The thesis proposes and developstile percolation, an OpenMP tile aware paral-

lelization technique that can be used to generate data percolation code for OpenMP

programs running on the Cyclops-64 processor. The thesis provides an exploration

of the necessity and possibility of developing pragma directives for semi-automatic

data movement code generation in OpenMP. The thesis also introduces the tech-

niques used to implement tile percolation, which includes the new programming

API, code generation, and the required runtime support. Evaluation results show

that tile percolation can make the OpenMP programs run on theCyclops-64 chip

much more efficiently.

• To improve the tile percolation technique, we have designedand developed the

Thread-Level Decoupled Access/Execution(TL-DAE for short) model for OpenMP

programs running on the Cyclops-64 chip. We have designed theTL-DAE pro-

gramming interfaces that can be used to help OpenMP compilerto generate decou-

pled code. We have also developed the runtime support that isneeded to support the

TL-DAE execution model. The experimental results demonstrate the effectiveness

of the TL-DAE execution model.

• We have proposed and developed an OpenMP tile aware parallelization technique

called tile reduction. It can apply parallel reduction on multi-dimensional arrays.

We discuss the methods used to implement tile reduction, including the required

OpenMP API extension and the associated code generation technique. We evalu-

ate the tile reduction technique with a set of benchmarks. The experimental results

show that using tile reduction can make the code parallelization more natural and

flexible. It not only can expose more parallelism in the program but also can im-

prove its data locality.

xvi

Chapter 1

INTRODUCTION

Programmers have long enjoyed the programming and performance efficiency of

the hardware-managed memory hierarchy (i.e. the cache-based memory hierarchy) that

most general computer systems have been using. However, dueto its scalability and

power issue [6], the hardware-managed memory hierarchy is not very suitable to be

adopted in multicore, especially manycore processor architecture. It is incredibly dif-

ficult to design a hardware-managed memory hierarchy for a 1000-core processor, which

is anticipated by many computer scientists, e.g. David Patterson [7] and Fran Allen [8].

The recent cancellation of Intel’s Larrabee project is partly due to the difficulty to design

an efficient cache-based memory hierarchy for its 80 on-chipcores.

Because of these difficulties, people have to resort to another approach, i.e. the

user-managed memory hierarchy approach. Typical examplesof this kind are the IBM

CELL processor [9, 10] and the IBM Cyclops-64 processor [11]. This kind of manycore

processor usually has one or multiple pieces of user-managed on-chip memory1 , which

is much faster and bandwidth-wider than off-chip memory. Inorder for programmers

to manage the on-chip memory in an easier and more effective way, it is necessary to

provide a certain amount of help from the programming model side. However, the current

mainstream programming languages (FORTRAN, C/C++, Java, etc.) were developed

based on the assumption of anuniform memory access(UMA) model. Thus, under this

1 Different segments of memory may be in the same address space, like the Cyclops-64
processor, or in different address space, like in the CELL processor

1

context, the designers of these programming languages never counted programming the

user-managed memory hierarchy as a program design challenge and never tried to propose

any language-level solution to it.

In this thesis, we will mainly use the Cyclops-64 processor and the OpenMP pro-

gramming model as the basis to discuss the possible solutions. The approach we devel-

oped in this thesis is termedtile aware parallelization. Tiling is widely used by compil-

ers and programmer to optimize scientific and engineering code for better performance.

Many parallel programming languages support tile/tiling directly through first-class lan-

guage constructs or library routines. However, the currentOpenMP programming lan-

guage istile oblivious, although it is thede factostandard for writing parallel programs

on shared memory systems. In this thesis, we introducetile aware parallelizationinto

OpenMP. Its purpose is to enhance the OpenMP API with the concept of tile/tiling, so

more program information can be exposed to the OpenMP compiler. Therefore, more

aggressive code transformation can be implemented and thusmore parallelism (data &

task) can be achieved by the OpenMP compiler.

Threetile aware parallelization(TAP for short) techniques will be developed in

this thesis. The first TAP technique is calledtile percolation. This technology is used to

help OpenMP compiler to automatically generate data percolation code for OpenMP pro-

grams running on the Cyclops-64 manycore processor. The second TAP technique is the

thread-level decoupled access/executionmodel. It is a continue improvement of thetile

percolationtechnique. It is supposed to be used to generate decoupled code so percola-

tion code and computation code can be executed in parallel onCyclops-64. The last TAP

technique we proposed is calledtile reduction, which allows reduction to be performed

on multi-dimensional arrays. The rest of this chapter will give a brief introduction to the

Cyclops-64 manycore processor architecture, the OpenMP programming model, and the

three TAP technologies we will discuss in this thesis.

2

1.1 Features of Manycore Processor Architecture - a Cyclops-64 Example

In this section, we will introduce the IBM Cyclops-64 manycoreprocessor archi-

tecture. Figure 1.1 is a diagram of the Cyclops-64 chip and node. A Cyclops-64 chip

has 80 homogeneous on-chip processors that are connected toa 96-port, 7-stage, non-

blocking on-chip crossbar switch [12]. Each processor consists of two thread units, one

floating point unit, and two SRAM memory banks (32KB each). A thread unit is a 64-bit,

single issue, in-order RISC core operating at clock rate of 500MHz. Therefore, a Cyclops-

64 chip contains 160 processing cores. Not like the traditional RISC processor, the thread

running on a Cyclops-64 processing core is not preemptable. Instead, the thread seizes

the processing core until itexits or returns from the thread execution.

The chip has 512KB instruction cache. Every 10 processing cores (i.e. five pro-

cessors) share a 32KB instruction cache bank. See Figure 1.1. The chip has no data

cache. Instead, each core contains a small amount of on-chipSRAM. For the current gen-

eration, the amount of SRAM associated with each processing core is 32KB. Therefore,

the whole chip has 5.2MB on-chip memory in total. The SRAM associated with each

core can be configured into either Scratchpad Memory (SP), orGlobal Memory (GM),

or both in combination2. The configuration is decided by the value stored in a system

configuration register that can be specified by programmer. Moreover, the same config-

uration is applied across all processing cores. Therefore,all processing cores have the

same amount of scratchpad memory. In the current configuration, half (16KB) of the

SRAM is configured to scratchpad memory; another half (16KB) isconfigured to global

memory. The current system software design (compiler, runtime, library) dedicates the

whole scratchpad memory to thread stack storage.

In addition to on-chip SRAM memory, off-chip DRAM are attachedonto the

crossbar switch through 4 on-chip DRAM controllers. The amount of DRAM that can

2 Scratchpad memory (SP) is a fast temporary storage that can be used to exploit lo-
cality under software control.

3

be attached to a Cyclops-64 chip is 2GB in. The Cyclops-64 chip does not support virtual

memory. Therefore, all threads on the same Cyclops-64 chip are running in the same

address space. It is the programmer’s job to make sure that threads do not destroy each

others text or data segments.

All memory modules are in the same address space and can be accessed directly

by all processing cores [13]. However, different segment ofthe memory address space

has different access latency and bandwidth. To a Cyclops-64 on-chip core, the fastest

memory segment is its local scratchpad memory. For all otheron-chip memory segments

(i.e. all remote scratchpad memory and global memory), theyhave longer access latency

than local scratchpad memory. However, they are much fasterthan off-chip DRAM. See

Figure 1.2 for the detailed memory performance parameters of the Cyclops-64 memory

hierarchies.

The A-switch interface of the chip connects the Cyclops-64 node to its six neigh-

bors in the 3D-mesh network. In every CPU cycle, A-switch can transfer one double-word

(8 bytes) in one direction. The 3D-mesh may scale up to several ten thousands of nodes,

which becomes a powerful parallel computing engine that canprovide computing power

at Petaflops level.

Cyclops-64 is targeted at applications that are highly parallelizable and require

enormous amount of computation power. The philosophies behind its architecture design

are:

• Explorethread level parallelism[14, 15, 16, 17, 18] in the program instead ofin-

struction level parallelism[19] in the program.

• Let user manage the memory hierarchies, not hardware.

These design philosophies greatly affects how programmerscan program the

Cyclops-64 processor efficiently and effectively. Roughly speaking, the Cyclops-64 chip

4

GMSP

SP

TU

TU GM

GM

GM

SP

SP

TU

TU

GMSPTU

TU SP GM

GMSPTU

TU SP GM

GMSPTU

TU SP GM

GMSPTU

TU SP GM

F
P

U TU SP GM

GMSPTU

2
1

3
4

5
80

6

DDR2 Controller

DDR2 Controller

DDR2 Controller

DDR2 Controller

F
P

U
F

P
U

F
P

U
F

P
U

F
P

U
F

P
U

Host Interface

A−Switch

icache−5P

icache−5P
icache−5P

icache−5P

icache−5P
icache−5P
icache−5P
icache−5P

icache−5P
icache−5P
icache−5P
icache−5P

icache−5P
icache−5P
icache−5P
icache−5P

IC
−

G
lu

e
IC

−
G

lu
e

IC
−

G
lu

e
IC

−
G

lu
e

...
...

F
P

G
A

3D−mesh

IDE

96
−

P
or

t C
ro

ss
ba

r
S

w
itc

h

C64 NodeC64 Chip
TU: Thread Unit

FPU: Floating Point

GM: Global Memory

SP: Scratchpad Memory

1G
 O

ffc
hi

p
D

R
A

M

Ctrl Network

 Unit

Gigabit Ether

Figure 1.1: The IBM Cyclops-64 Manycore Processor

64x64bit register
per thread unit

off−chip DRAM

(on−chip)

(on−chip)

SRAM

SPM

Reg

Capacity: 1GB
load: 57 cycles
store: 29 cycles
Bandwidth: 16GB/s

SPM+SRAM=5.2MB

load: 31 cycles
store: 16 cycles
Bandwidth: 320GB/s

si
ng

le
 a

dd
re

ss
 s

pa
ce

load: 2 cycles
store: 1 cycle
Bandwidth: 320GB/s

Figure 1.2: The Cyclops-64 Memory Hierarchy

5

is a single-chip shared memory multiprocessor system. Without considering the hetero-

geneity of its memory hierarchies, the most suitable programming model for Cyclops-64

is OpenMP [5].

1.2 A Brief Introduction to OpenMP

OpenMP is thede factostandard for writing parallel programs on shared memory

multiprocessor systems. It is an application programming interface that supports multi-

platform shared memory multiprocessing programming in C, C++, and FORTRAN on

many architectures, including Unix and Microsoft Windows platforms. It consists of a

set of compiler directives, library routines, and environment variables that affect run-time

execution behavior.

OpenMP is based upon the existence of multiple threads in theshared memory

programming paradigm. It is an explicit parallel programming model, offering the pro-

grammer full control over parallelization. It is not an automatic parallel programming

model. OpenMP uses thefork-join model of parallel execution. An OpenMP program

begins as a single process - themasterthread. The master thread executes sequentially

until the first parallel region construct is encountered. The master thread then creates a

team of parallel threads The statements in the program that are enclosed by the parallel

region construct are then executed in parallel among the threads in the same team. When

the team threads complete the statements in the parallel region, they synchronize and

terminate, leaving only the master thread. See Figure 1.3

OpenMP is compiler directive based. Most OpenMP parallelism is specified

through the use of compiler directives which are embedded inC/C++ or FORTRAN

source code. OpenMP supports nested parallelism. This is achieved by placing a par-

allel construct inside another parallel construct. OpenMPAPI provides for dynamically

altering the number of threads which may be used to execute different parallel regions.

OpenMP specifies nothing about parallel I/O. It is entirely up to the programmer to insure

that I/O conducted correctly within the context of a multithreaded program. OpenMP

6

O
R

F

K

O
R

F

K

O
J

I
N

O
J

I
N

master thread

slave thread

{Parallel Region} {Parallel Region}

Figure 1.3: OpenMP Fork-Join Execution Model

provides a ”relaxed-consistency” and ”temporary” view of thread memory. Threads can

cache their data in their local storage and are not required to maintain exact consistency

with read memory all of the time. When it is critical that all threads view a shared variable

identically, the programmer is responsible for insuring that the variable is flushed by all

threads as needed.

Figure 1.4 shows the major five different categories of OpenMP language con-

structs and some of the examples. Following is a little bit detailed introduction.

parallel control
structures env. variables

runtime funcswork sharing data
environment

synchronization

omp_set_num_threads()
directive: directive: clause: directive:

critical

governs flow of
control in the
program

distributes work
among threads

scopes variablescoordinates thread
execution

runtime environment

for, single shared, private
omp_get_thread_num()

OMP_NUM_THREADS

OMP_SCHEDULE ...

atomic

barrier ...

firstprivate

lastprivate ...
section, task ...parallel

Overview of OpenMP Language Extensions

Figure 1.4: Overview of OpenMP Language Extensions

7

• Parallel Control Construct: This governs the control flow of the program. The

only construct that fall in this category is theparallel directive. It specifies a

parallel region. Upon encountering aparallel directive, the master thread will fork

a team of slave threads to execute the parallel region task inparallel. See Figure

1.3.

• Work Sharing: The work sharing constructs control how works in the parallel

region are distributed among the threads. They include these directives: for,

single, section, task. for defines how loop iterations are distributed among

the threads;single requires that the guarded region can only be executed once;

section decides how different bodies of the program code are executed by dif-

ferent threads;task specifies an explicit task that can be scheduled for execution

by one of the threads in the team.

• Data Environment: These clauses specify the ”visibility” of the variables used

in the OpenMP parallel program. By default, all variables aresharedvariable,

which means that all threads access the same piece of data in memory if using the

same symbolic variable name. Therefore,synchronizationprimitives are required

to guarantee mutual exclusion if a shared variable is accessed by multiple threads

and at least one is writing it. By predicating the variable with theprivate clause,

the variable becomes private variable. Each thread would have its own local copy

of the variable. Thus, no synchronization is required when accessing the variable.

• Synchronization: As was just mentioned, the OpenMP API need to provide syn-

chronization primitives to coordinate the execution behavior among threads. The

critical directive specifies a region of code that must be executed by only one

thread at a time. Theatomic directive specifies that a specific memory location

must be updated atomically, rather than letting multiple threads attempt to write to

8

it. In essence, this directive provides a mini-critical section. Thebarrier di-

rective synchronizes all threads in the team. When abarrier directive is reached,

a thread will wait at that point until all other threads have reached that barrier. All

threads then resume executing in parallel the code that follows the barrier.

• Runtime Functions & Environment Variables: OpenMP provides a set of run-

time functions and environment variables so programmers can use them directly in

their OpenMP program. Examples are like thread number or thenumber of threads

in the team. Synchronization directives also have their corresponding runtime func-

tions defined in the OpenMP runtime library.

The OpenMP designers have drawn a very clear line between programmer and

compiler regarding the task of parallelizing a sequential program written in C/C++ and

FORTRAN. Programmer’s job is to use a set of simple and limitednumber of directives

to annotates his/her source code to tell the compilerwhereandhow 3 to parallelize the

sequential program. It is the compiler’s responsibility toperform the required code trans-

formation to convert the sequential program into a multithreaded program on the host

machine. This is usually achieved by wrapping certain segments of the control-flow of

the sequential program into the native thread library functions, so they can be executed

in parallel by different native threads at runtime. In this code transformation procedure,

synchronization directives are mapped to native thread synchronization functions

to ensure correct concurrent execution semantics.

1.3 Problems with OpenMP

Roughly, OpenMP APIs are control-flow oriented. OpenMP programmers’ job is

to use these APIs to identify & annotate potentially parallelizablecontrol-flow segments

3 It is very difficult for the compiler to knowwhereandhow to parallelize a sequen-
tial program. If we leave this for compiler, the technique would becomeautomatic
parallelization[20, 21, 22, 23].

9

in the code and expose them to OpenMP compiler, so OpenMP compiler can generate cor-

rect multithreaded program. Apparently, the OpenMP designers focus only on designing

utilities for manipulating control-flow segments in the sequential program. The existing

OpenMP APIs do not have constructs that can be used to transfer information about data

(memory location, shape, size etc.) to compiler if the program is running on segmented

memory address space. Just like what we have found on IBM Cyclops-64 processor. The

reasons are:

• Originally, OpenMP was developed to parallelize sequential programs running on

shared-memory parallel machines. Most of these machines have an uniform mem-

ory address space.

• The base languages on which OpenMP was grown are all control-flow oriented

programming languages. They all assume an uniform memory address space in

their memory model.

Therefore, the OpenMP designers did not have the motivationto invent directives that can

be used to deal with problems that would occur when the parallel program is running on

a machine with non-uniform memory address space. An exampleis given in Figure 1.5.

Figure 1.5 shows a piece of very typical OpenMP code. We assume this piece of

code is part of a program that will run on Cyclops-64.

• Line 1-5: An array of record pointer is defined. Due to its size, this array and the

record objects pointed to by the pointers stored in the arrayare placed in off-chip

DRAM (which is larger) when the program starts running.

• Line 6: Theprocess record functions process a single record pointed to by

rp without touching other global variables. Therefore, it is very suitable to be par-

allelized. Besides, we assume that data fields in therecord t would be accessed

multiple times in this function.

10

0 ...
1 typedef struct {
2 ...
3 } record_t;
4
5 record_t *rcd[10000];
6 void process_record(record_t *rp);
7 ...
8 #pragma omp parallel for shared(rcd) private(i)
9 for (i=0; i<10000; ++i)
10 {
11 process_record(rcd[i]);
12 }
13 ...

Figure 1.5: A piece of code that can not be parallelized very well on machines with user-
managed memory hierarchies (i.e. non-uniform memory address space)

• Line 8-12: A for loop traverses the pointer array to process each records. This

loop is parallelized by using a typical OpenMPparallel for directive.

As we have mentioned, if we ignore the heterogeneity of its memory hierarchies,

Cyclops-64 becomes an SMP parallel processing machine. Code between line 8 and 12 is

a very standard OpenMP optimization for such a kind of SMP machine. However, due to

the poor performance of off-chip memory (both latency and bandwidth, see Figure 1.2),

it is desired to move each record into on-chip memory (which is much faster and has

much wider bandwidth) and then call functionprocess record to work on the copies

located in on-chip memory. In this way, the program execution on Cyclops-64 would have

shorter memory access latency and would also save a great amount of off-chip memory

bandwidth. But the existing OpenMP API does not provide any directive or clause that

can help to achieve this goal. Programmers must add the required data movement code

into the OpenMP program manually. Otherwise, the parallelized sequential would not

achieve the expected high performance on this platform. Requiring programmers to deal

with the heterogeneity among different memory segments would add another level of

11

complexity for programming a multicore processor.

In addition, even programmers (or compiler) have successfully inserted correct

data movement code at the right place in the program, it does not ensure the good perfor-

mance that the program is supposed to achieve. The problem isthat the data movement

code inserted is embedded in computation code and thus the two parts may not be able

to run in parallel. Usually, people want to hide memory access latency by overlapping

the execution of computation code and data movement code. This requires that the two

parts, i.e. data movement code and computation code, can be dynamically decoupled4

and executed in parallel. Sometimes, this can be solved by using the asynchronous DMA

supported in hardware [26]. However, due to its hardware design complexity and run-

time overhead [27], DMA may not be supported on every manycore processor, especially

for those that do not use bus as their on-chip interconnection. As an example, Cyclops-

64 is such a kind of processor that does not support asynchronous DMA in hardware.

Therefore, it is the programmers job to recode the OpenMP program to make sure that

data movements and computations are overlapped in execution on the Cyclops-64 proces-

sor. Unfortunately, the current OpenMP programming model and execution model do not

provide any support for people to approach this goal.

In one word, the pragma directives and clauses existed in thecurrent OpenMP is

not enough to handle the issues that parallel programs wouldencounter on Cyclops-64. It

is desired to extend the OpenMP APIs to solve these new problems. We would propose

our solutions in the next section.

1.4 Solution Methodologies

From what have been discussed in the last section, we may drawthe conclusion

that significant challenges would pop up if programmers use the existing OpenMP APIs

4 Like the instruction pipeline and out-of-order execution techniques used in modern
Superscalar processors [24, 25] for exploring instructionlevel parallelism.

12

to parallelize their sequential programs for the Cyclops-64manycore processor. The dif-

ficulties come from the fact that, as a programming model, OpenMP does not have lan-

guage constructs that can be used to deal with user-managed memory hierarchies on the

Cyclops-64 processor. To overcome these difficulties, it is required to extend OpenMP

API to handle issues that would arise on manycore processorswith user-managed mem-

ory hierarchies. This motivates me to develop thetile aware parallelizationtechniques

for the OpenMP programming language. The basic idea is to enhance the OpenMP API

with the concept of data tile so programmers can use the extended OpenMP API to an-

notate their programs and tell the compiler how the data tiles are look like and how they

are used in the program, or where the data tiles are located etc. The purpose is to expose

more information about program data so compiler can have more opportunities to perform

some aggressive optimizations that would be impossible (orinefficient, or inaccurate) if

without the hints input from programmer.

In the thesis, the first tile aware parallelization technique we developed for

OpenMP programming language is calledtile percolation. The purpose of tile perco-

lation is to enable OpenMP programmers not only the capability to direct the compiler to

perform computation decomposition, but also the power to direct the compiler to perform

data movement related optimizations. Programmers will be provided with a set of simple

OpenMP pragma directives. They can use these directives to annotate their program to

instruct the compiler where and how data movement will be performed. Compiler will

generate the correct computation and data movement code based on these annotations.

At runtime, a set of routines will be provided to perform the dynamic data movement

operations. This not only makes the programming on the Cyclops-64 chip easier, but also

makes sure that the data movement code inserted into the program has good performance

quality. Tile percolation is targeted to array intensive applications. So the major data

objects being manipulated are sub-blocks in the multi-dimensional array. That’s why this

method is termed as tile percolation.

13

In the tile percolation technique, the data movement code generated by compiler is

embedded in computation code. Under the current OpenMP execution model, data move-

ment code can not be executed in parallel with the computation code. Asynchronous

DMA can solve this problem. However, as we said, Cyclops-64 does not support DMA.

To overcome this disadvantage, we propose the second tile aware parallelization tech-

nique for OpenMP. The technique is calledThread-Level Decoupled Access/Execution,

or TL-DAE for short. Its purpose is to let OpenMP compiler generate the decoupled pro-

gram so computation code and data movement code can be run in parallel. It is inspired

by the original hardware based DAE [28, 29], in which memory access (operands fetch

and results store) and computation execution are architecturally decoupled and thus can be

maximally overlapped. Not like the hardware based DAE, TL-DAE is developed as a soft-

ware execution model for OpenMP programs running on the Cyclops-64 processor. In our

design, data movement code and computation code are decoupled implicitly by OpenMP

compiler at compile time. At runtime, two different groups of threads are spawned: the

computation threads and the percolation threads. Computation thread runs computation

code while percolation thread runs data movement code. The execution of computation

thread and percolation thread can slip with respect to each other, so percolation thread can

run further ahead than computation thread and fetch data forit. Thus, computation code

and data movement code of different stages can be executed inparallel. To help OpenMP

compiler decouple the program, we propose the TL-DAE programming interface for the

the programmers. The TL-DAE programming interface is a set of OpenMP tile aware

parallelization pragma directives. Programmers can use these directives to annotate their

programs to specify where and how data movement would be performed. OpenMP com-

piler, accordingly, will interpret these directives and generate the correct decoupled data

movement code.

The third tile aware parallelization technique we developed for OpenMP is called

tile reduction. Reduction is a very common recursive operation that performs aggregation

14

on a set of data of the same type. Due to the associativity and commutativity of the

mathematical operator used in the calculation, reduction can be performed in parallel

on better performance. The current OpenMP supports parallel reduction. However, it

only supports reduction on scalar variables. We call this kind of reduction asscalar

reduction. In this thesis, we introduce a new technique called tile reduction, which evolves

the current reduction parallelization from scalar variables to multi-dimensional arrays.

We have extended the traditional reduction clause to allow the programmers to annotate

their code where tile reduction can be applied. We have also developed the required

code generation technique to interpret the new reduction clause and generate the required

parallel code accordingly.

1.5 Publications

This thesis is based on several published papers. The work ontile percolation

[30] was included in the proceedings of Euro-Par 2009. The work on TL-DAE [31] was

published in the 22nd International Workshop on Languages and Compilers for Paral-

lel Computing (LCPC 2009). The work on tile reduction [32] was presented in the 5th

International Workshop on OpenMP (IWOMP 2009).

1.6 Thesis Organization

The remainder of this thesis is organized as follows. Chapter2 gives a back-

ground introduction of the multicore era and surveys the programming models developed

for multicore processors with user-managed memory hierarchy. Chapter3 introduces the

tile percolation technique, which includes the design of the API and the implementation

of code generation and runtime routines. Chapter4 presents the thread-level decoupled

access/execution model for OpenMP programs running on Cyclops-64. Chapter5 intro-

duces the tile reduction technique, which extends the OpenMP concurrent scalar reduction

operation to multi-dimensional arrays. Chapter6 concludes this thesis and also proposes

several directions that we can make improvements.

15

Chapter 2

BACKGROUND

2.1 A Multicore/Manycore Era

With the silicon VLSI technology advancing towards 65nm, 45nm and 32nm [33],

computer architecture design is leaping into the multicore(or manycore) era. There are

a number of factors that drive this great change. They are: the power and thermal issue,

the limits of instruction level parallelism, and the gap between CPU and memory speeds.

Usually, people call thempower wall, ILP wall, andmemory wall.

• Power Wall: After four decades of development under Moore’s Law, the number

of transistors that can be integrated on a chip has reached 1-10 billion-level [34].

Meanwhile, the clock frequency has scaled to several gigahertz and is heading to

ten gigahertz. Because of these changes, the power consumption of the chip has

increased dramatically [35]. And the power dissipation hasbecome a very high

priority issue in all kind computer systems, from handheld devices to high perfor-

mance computers [36, 37, 38]. Without special cooling system, the chip will burn

out quickly under current clock frequency. Therefore, it isnow not possible to

improve processor performance by clock frequency scaling.

• ILP Wall: In 1991, in his famous paper [19], David W. Wall investigatedthe

amount of instruction level parallelism that exists in typical programs. Through

simulation, he analyzed a set of programs on which”impossibly good techniques”

have been applied. These include register renaming, alias analysis, branch predic-

tion, and speculative execution, etc. After analyzing the experimental results, he

16

found that”the average parallelism rarely exceeds 7, with 5 more common” [19].

This means that there is little performance potential left in instruction level par-

allelism regarding the current dynamic or static instruction scheduling techniques.

Instead of increasing issue width, deepening the pipeline,and building complicated

speculative execution units, it is time for people to explore performance at a higher

level of parallelism, i.e. thethread level parallelism[14, 15, 16, 17, 18].

• Memory Wall: With the widening gap between CPU and memory speeds (CPU

speeds double every eighteen months while memory speeds double only every ten

years) [39, 40], the CPU performance suffers a lot from longermemory access la-

tency. Currently, in a typical modern processor, loading from off-chip memory will

cost several hundred or a thousand cycles [41]. And this number is still increasing.

Apparently, it is not possible to hide such a long latency in the traditional single

thread execution model.

Power wall, ILP wall, and memory wall together form the brickwall that stop

people from improving CPU performance through old methods. They make some of the

old wisdom used in designing the traditional superscalar architecture no longer applicable

[7]. For example, clock frequency scaling is limited by power issue; the potential of ad-

vanced branch prediction and dynamic scheduling hardware units is constrained by ILP

limits; and the speculative execution units can not tolerate such a long memory access

latency in a single thread context, no matter how clever and aggressive they are. Com-

puter architects need new wisdom to design computer processors of the next generation.

The new wisdom must be able to use the billion-level transistor budge in a more power

efficient way and must provide enough headroom for performance improvement.

Under these settings, multicore processor (or chip multiprocessor (CMP)) are

emerging as a very promising alternative to the conventional superscalar architecture.

Multicore processor usually consists of several, or a greatnumber of processing cores

on a single chip. The processing cores are arranged in a decentralized microarchitecture

17

which simplifies wiring and interconnection logic [42], andthus achieves higher scala-

bility and power efficiency [43]. Meanwhile, it provides direct and efficient support in

hardware for the compiler and runtime system to exploit thread level parallelism in the

program, in which it was believed to have much more potentialfor performance improve-

ment [44]. Furthermore, the multithreaded execution modelprovides an easy way to hide

the ever increasing memory access latency [45] and thus improves the program execution

efficiency. In short, multicore processor is a very promising computer architecture that

can effectively translate the billion number of transistors on the chip to program perfor-

mance without violating power consumption limits.

Because of the advantages and promising future of multicore processor, all major

chip makers have announced their multicore plans or have even started shipping multicore

products to the market. For example, the IBM CELL processor [9,10], IBM POWER5

[46], Sun Niagara [47], Intel Dual-core Montecito [48], Intel Tera-scale 80-core processor

[49], ClearSpeed [50], nVidia [51], ATI [52], Tilera [53], and AMD Dual-core Opteron.

In addition to the works in industry, people in academia havealso initiated many mul-

ticore research projects. For example, the Hydra project [54] and the Smart Memory

project [55] in Standford, VIRAM [56] in Berkeley, the Cyclops-64 project [11] between

Univ. of Delaware and IBM, the RAW [57] and SCALE [58] projects inMIT, the TRIPS

project [59] in UT Austin, and the Synchroscalar project [60] in UC Davis. In these re-

search projects, a number of multicore architecture designs have been explored. They

come across many major subjects of computer architecture design, which include the

high speed on-chip interconnect techniques, the efficient synchronization mechanisms,

the scalable and low-latency cache organization, the heterogeneous core vs. homoge-

neous core choices, and different parallel programming models, etc.

Roughly, all these multicore processors, either from industry or from academia,

fall into two categories. For convenience’s sake, we call them type-1 and type-2 multicore

processors [2].

18

• Type-1 Multicore Processor: The major characteristic of the type-1 multicore

processor is that it always glues several heavy weight processing cores on a single

chip. Usually, these processing cores are the traditional Superscalar processors.

Most of the current multicore processor products in the market are type-1, e.g. Intel

Dual Core Montecito and AMD Dual Core Opteron.

• Type-2 Multicore Processor: All multicore processors that are not type-1 fall into

this category. Type-2 multicore processors represent people’s effort to explore the

parallel architecture design space and to search for the most suitable multicore pro-

cessor design model [61, 62]. Usually, a variety of design choices can be observed

in different type-2 multicore processors. For example, heterogeneous core vs. ho-

mogeneous core, etc. The typical type-2 multicore processors are the IBM CELL

processor and the Cyclops-64 processor.

Given fixed die area and power budget, type-1 multicore processor does not scale

very well. The reason is that the on-chip processing cores used on type-1 multicore chip

are still the traditional Superscalar processors. They rely heavily on complicated out-of-

order execution logic and thus consume a significant amount of on-chip silicon resources

(which is disproportionally higher than its performance gain). Meanwhile, such a com-

plicated circuit design makes it very power inefficient. Forthese reasons, the number of

on-chip cores integrated on type-1 multicore processors rarely exceeds16.

An alternative is to integrate many simple processing coreson the multicore chip.

These processing cores usually adopt in-order RISC execution engine with instruction

issue width of one or two. Each processing core exploits a moderate amount of parallelism

within a single thread, but the whole chip can leverage the massive thread level parallelism

in the application. Because each processing core is very simple, it consumes much less

transistors and is very power efficient. Therefore, this kind of multicore processors have

19

the potential to scale up to several hundred or thousand cores 1. They are also given

the namemanycoreprocessor. The IBM Cyclops-64 processor is this kind of type-2

manycore processor. Other multicore/manycore processorsthat also fall into the type-

2 group include the IBM CELL processor [9, 10], ClearSpeed [50],nVidia [51], Tilera

Tile64 [53], and Intel Larrabee [63], etc.

These type-2 manycore processors can be further divided into different subgroups

based on other design features, like the homogeneity of the on-chip cores (homogeneous

vs. heterogeneous); the type of on-chip interconnections (mesh, crossbar, or NoC); and

the flavor of the processor’s memory hierarchy (hardware-managed or user-managed).

The interest of this thesis is not on the architecture designof manycore processors. In

stead, our discussion will be focused on the problem of how toprogram the user-managed

memory hierarchy that is widely used in many type-2 manycoreprocessor. In the next sec-

tion, we will give a brief survey of the programming models proposed for user-managed

memory hierarchy.

2.2 Programming Models for User-Managed Memory Hierarchy

The most well known programming model for computer systems with user-

managed memory hierarchy is OpenCL [64], i.e. theOpenComputingLanguage, which

is is managed by the non-profit technology consortium Khronos Group. OpenCL is not

designed for any specific computer platform. It is a languageframework for writing

programs that run across heterogeneous platforms consisting of CPUs, GPUs, and other

processors. These CPUs, GPUs, and other processors may each contain local/private

memory that has different access latency & bandwidth and canbe manipulated directly

by programmers. OpenCL includes a language (which is based onC99 standard) for

writing kernel functions (code that would execute on devices). In addition, OpenCL also

1 For type-2 multicore processor, the Moore’s Law now becomes: ”the number of
processing cores on a single chip doubles every generation.”

20

include a set of APIs that are used to define and then control the whole platforms. OpenCL

provides parallel computing using task-based and data-based parallelism.

OpenCL gives any general application the right to access the Graphical Processing

Unit for non-graphical computing purpose. The GPU had previously been available for

graphical applications only. The GPU memory would be available to the operating system

and or applications essentially as faster system memory than the main system memory.

Therefore, OpenCL extends the power of the Graphical Processing Unit beyond graphics,

i.e. the general-purpose computing on graphics processingunits. In other words, in

OpenCL, the low level memory details (main memory, device memory, etc.) are exposed

to users via standardized programming interfaces. It is theprogrammers’ responsibility

to use these APIs efficiently and effectively. Other programming models that also adopt

similar policy are nVidia CUDA [51] and Microsoft DirectCompute [65].

CUDA is short forComputeUnified DeviceArchitecture. It is a parallel comput-

ing architecture developed by nVidia. CUDA is the computing engine in nVidia graphics

processing units or GPUs that is accessible to software developers through industry stan-

dard programming languages. CUDA assumes a memory model in which CPU and GPU

have separate memory spaces. Data is moved across PCI bus. It is necessary to use spe-

cial functions to allocate, copy, and deallocate memory on GPU. In addition, pointers in

CUDA are just addresses. Programmers can not tell from the pointer value whether the

address is on CPU or GPU. Dereferencing CPU pointer on GPU will crash the program.

So it is necessary to exercise care before dereferencing. Itis the same for vice versa.

Microsoft DirectCompute is an application programming interface (API) that supports

General-purpose computing on graphics processing units onMicrosoft Windows Vista or

Windows 7. DirectCompute is part of the Microsoft DirectX collection of APIs. Similar

memory model and memory access APIs can also be found in DirectCompute.

UPC [66] (Unified Parallel C) is another parallel programminglanguage that deals

with user-managed memory hierarchy at language level. It isan extension of the C

21

programming language designed for high-performance computing on large-scale paral-

lel machines, including those with a common global address space (SMP and NUMA)

and those with distributed memory (e.g. clusters). The programmer is presented with a

single shared, partitioned address space, where variablesmay be directly read and written

by any processor, but each variable is physically associated with a single processor. UPC

uses a Single Program Multiple Data (SPMD) model of computation in which the amount

of parallelism is fixed at program start-up time, typically with a single thread of execution

per processor. In UPC memory model, there are two kinds of memory: shared memory

and private memory. These two kinds of memory are logically correspond to the main

memory and device memory in OpenCL and CUDA. Static and dynamicmemory alloca-

tion are supported for both shared and private memory. Variables can be declared to be

shared using the keywordshared. Shared objects are placed in memory based on affin-

ity. Affinity can also be defined based on the ability of a thread to refer to an object by a

private pointer. All non-array shared qualified objects have affinity to thread 0. All array

shared qualified objects are distributed across the privatememory (associated with each

thread) via the predefined distribution policy. Threads canaccess shared and private data.

UPC provides standard library functions to move data to/from shared memory. They can

be used to move chunks in the shared space or between shared and private spaces. This

part is exactly the same as we can see in OpenCL and CUDA.

The IBM CELL Broadband Engine (BE) processor [67] is a heterogeneous many-

core processor that provides both flexibility and high performance. The first generation

CELL BE processor includes a 64-bit multithreaded PowerPC processor element (PPE)

and eight synergistic processor element (SPE). Each SPE has256-KB local memory (also

called local storage) to accommodate both program instructions and data. These local

memories and main memory are each in a separate address space. SPEs transfer data

between local memory and main memory through the DMA engine,which is controlled

by programmers though DMA instructions. It is very clear that it is a great challenge to

22

the programmers to manage the transfers of code and data between main memory and

local memory. To attack this problem, asingle shared memory abstractionis assumed in

the programming model proposed by IBM [68]. This is achieved by using the compiler-

controlled software cache in SPE. Like its hardware counterpart, a software directory is

maintained in each SPE local storage. The compiler, after inter-procedural analysis, re-

places some load and store instructions with instructions that explicitly look up the effec-

tive address of the datum in the software cache directory. Ifthe line containing the datum

is found in the directory, the address of the requested variable is computed and the load

or store continues using this local store location. Otherwise, a subroutine, the cache miss

handler, is invoked and the requested data is transferred from system memory. Just like

the hardware caches, the directory is updated, and typically another line is selected for

eviction in order to make room for the new element. Therefore, by using this approach,

the compiler can undertake the task of orchestrating data transfer between local memory

and main memory. Moreover, there are many optimizations that the compiler can perform

to optimize these data transfers, especially when memory references are regular.

The current implementation supports two variants of software cache. One variant

supports only single-threaded code. In this version, as itsname suggests, the cache line

can be written out to main memory as a whole without worrying about overwriting data

that are not supposed to be modified. Therefore, there is not need to keep track which

words have been modified. This greatly simplifies the code sequence of cache miss han-

dler and also greatly reduces the runtime overhead of cache line eviction. However, this

requires that a multithreaded program must not have shared variable, which makes it not

practical for most real parallel applications. The second variant supports multi-threaded

shared memory programs. In order to do this, it is necessary to keep track in the cache

directory (on each SPE) that which bytes have been written since the line was brought in

from system memory. Then, when a line is to be evicted, eitherin support of a miss or

to implement explicit flushes required for conformance withmemory consistency rules,

23

only the modified bytes are written by the DMA engine. Keepingtrack of dirty bytes

requires inserting additional code inline for each store operation in addition to the lookup

code discussed above. To accomplish this, the directory entry is extended by additional

bits for each bytes in the cache line. This is an non-trivial space overhead in addition to

the runtime overhead. If the data access pattern is regular,the program can use static data

buffer and thus eliminating all the storage and runtime overhead.

Another programming model developed for the CELL BE architecture is termed

CellSs, i.e. the Cell Superscalar framework (CellSs), which isbased on a source to source

compiler and a runtime library. The supported programming model allows the program-

mers to write sequential applications and the framework is able to exploit the existing

concurrency and to use the different components of the Cell BE (PPE and SPEs) by means

of a automatic parallelization at execution time. The only requirement is that annotations

(somehow similar to the OpenMP ones) are written before the declaration of some of the

functions used in the application. The annotation, on one hand, indicates a parallel task

region, on the other hand, specifies the data that need to be copied into or copied out of

the SPE local storage at runtime. The compiler generate the parallel program with data

movement code inside.

HTA [?], i.e. theHierarchicallyTiled Arrays, introduces the concept of ”data

tile” as the first class data object into the programming language. Such a ”tile oriented”

programming model can be used to program the array intensivealgorithms. In these

algorithms, multi-dimensional arrays are the core data structures. HTA partitions these

multi-dimensional arrays into multiple hierarchies of data tiles. Programmers can manip-

ulate these data tiles directly in their programs. The advantages are:

1. The tile hierarchy directly models the memory hierarchy of the computer system.

Therefore, HTA facilitates the exploration of different levels of data locality existed

in the program.

24

2. The hierarchical data tiles can be distributed in physically separated memory seg-

ments, so communications in the parallel program can be modeled as distributed

tile assignment, which is much simpler and less error prone than explicit thread

communication routines, e.g. MPI.

3. Data parallelism of the program can be harnessed via the data tile operations, there-

fore, parallelism is highly structured, which greatly improves the readability over

the SPMD paradigm.

All the above methods either rely solely on programmers to manage data move-

ment explicitly in the program or need programmers’ hints todirect compiler to gener-

ate the required code. Kandemir propose a pure compiler method in [69] to deal with

the data movement problem. His work targets single core embedded processors with

user-managed scratch-pad memory. His approach is basically a natural extension and ap-

plication of Monica Lam and Michael Wolfe’s loop nest optimization work to embedded

processors. The method includes an optimization suite thatuses loop and data transforma-

tions, an on-chip memory partitioning step, and a code-rewriting phase that collectively

transform an input code automatically to take advantage of the on-chip SPM. Compared

with previous work, the proposed scheme is dynamic, and allows the contents of the SPM

to change during the course of execution, depending on the changes in the data access

pattern.

The method proposed in this thesis is not a pure compiler approach. It relies on

programmer’s intervention to direct compiler to generate the required optimized code. It

not only simplifies the development of compiler but also grant more flexibility for pro-

grammer to develop port parallel program.

25

Chapter 3

TILE PERCOLATION

Programming a multicore processor is difficult. It is even more difficult if the pro-

cessor has user-managed memory hierarchy, e.g. the IBM Cyclops-64 (C64). A widely

accepted parallel programming solution for multicore processor is OpenMP. Currently,

all OpenMP directives are only used to decompose computation code (such as loop iter-

ations, tasks, code sections, etc.). None of them can be usedto control data movement,

which is crucial for the C64 performance. In this chapter, we propose a technique called

tile percolation. This method provides the programmer with a set of OpenMP pragma

directives. The programmer can use these directives to annotate their program to specify

whereandhow to perform data movement. The compiler will then generate the required

code accordingly. Our method is a semi-automatic code generation approach intended

to simplify a programmer’s work. In this chapter, we provides (a) an exploration of the

possibility of developing pragma directives for semi-automatic data movement code gen-

eration in OpenMP;(b) an introduction of techniques used to implement tile percolation

including the programming API, the code generation in compiler, and the required run-

time support routines;(c) and an evaluation of tile percolation with a set of benchmarks.

3.1 Introduction

OpenMP [5] is thede factostandard for writing parallel programs on shared

memory multiprocessor system. For the IBM Cyclops-64 (C64) processor [70, 71, 11],

OpenMP is one of the top selected programming model. As shownin Figure 1.1, the C64

chip has 160 homogeneous processing cores. It has instruction cache but no data cache.

26

Instead, each core contains a small amount of SRAM, 512KB each. So there are total

5.2MB on-chip SRAM. Part of them can be configured into Scratchpad Memory (SPM).

The rest are called Global Memory (GM). Off-chip DRAM are attached onto the crossbar

switch through 4 on-chip DDR2 memory controllers. All memorymodules are in the

same address space and can be accessed directly by all processing cores [13]. Therefore,

data can be moved from any segment of the address space to any other segment of the ad-

dress space through the normalload/store instructions. However, different segment

of the memory address space has different access latency andbandwidth. See Figure 1.2

for the detailed parameters of the C64 memory hierarchy. Roughly speaking, the C64

chip is a single-chip shared memory multiprocessor system.Therefore, it is easy to land

OpenMP on the C64 chip [72]. However, due to itsuser-managedmemory hierarchy,

making an OpenMP program run efficiently on the C64 chip is not atrivial task.

Given a processor like C64, it is important for the OpenMP programs to fully

utilize the on-chip memory resources. This requires the programmer to insert code in the

program to move data back and forth between the on-chip and off-chip memory. Thus,

the program can benefit from the short latencies of the on-chip memory and the huge

on-chip bandwidth. Unfortunately, this would make the C64 multicore processor more

difficult to program. From the OpenMP methodology, we have learned that it would be

very helpful if we could annotate the program with a set of OpenMP pragma directives

to specify where data movement is beneficial and possible, and let the compiler generate

the required code accordingly. This is just like using theparallel for directive to

annotate a loop and let the OpenMP compiler generate the multithreaded code. This

would free the programmer from writing tedious data movement code.

To solve this problem, we developedtile percolation, a tile aware parallelization

technique [32] for the OpenMP programming model. The programmer will be provided

with a set of simple OpenMP pragma directives. They can use these directives to annotate

their program to instruct the compilerwhereandhowdata movement will be performed.

27

The compiler will generate the correct computation and datamovement code based on

these annotations. At runtime, a set of routines will be provided to perform the dynamic

data movement operations. This not only makes the programming on the C64 chip easier,

but also makes sure that the data movement code inserted intothe program is optimized.

Since the major data objects being moved are ”sub-blocks” inthe multi-dimensional ar-

ray, this approach is termedtile percolation. The major contributions of this research

are as follows: (a) As far as the author is aware, this is the first research that explores

the possibility of using pragma for semi-automatic data movement code generation in

OpenMP; (b) The research has developed the techniques used to implement tile percola-

tion, including the programming API, the code generation incompiler, and the required

runtime support. (c) We have evaluated tile percolation with a set of benchmarks. Our

experimental results show that tile percolation can make the OpenMP programs run on

the Cyclops-64 chip more efficiently.

The rest of the chapter is organized as follows. In Section 3.2 we use a motivating

example to show why tile percolation is necessary. Section 3.3 will discuss how to im-

plement tile percolation in the OpenMP compiler. We presentour experimental results in

3.4 and draw our conclusions in Section 3.5.

3.2 A Motivating Example

In this section, we use the tiled matrix multiplication codeas a motivating ex-

ample to demonstrate why writing efficient OpenMP program for the user-managed C64

memory hierarchy is not trivial and why a semi-automatic code generation approach is

necessary.

Figure 3.1 shows the tiled matrix multiplication code1 and the data access pattern

1 Because of the advantages of thesurface-to-volumeeffect [73], thealgorithm-by-tile
approach [74, 75, 76] is used intensively in developing scientific and engineering
code. For instance, the LAPACT programs [77] use many level-3BLAS code [78]
to leverage the computer’s memory hierarchy, no matter if the memory hierarchy is
managed by hardware or software, or if it is managed implicitly or explicitly.

28

loops
tiling

1 for (ii=0; ii<n; ii+=b)
2 for (jj=0; jj<n; jj+=b)
3 for (kk=0; kk<n; kk+=b)

4 for (i=ii; i<min(ii+b,n); i++)

6 for (k=kk; k<min(kk+b,n); k++)
5 for (j=jj; j<min(jj+b,n); j++)

controlling loops

7 C[i][j]+=A[i][k]*B[k][j]

(a) Tiled Matrix Multiplication Code

0

1

2

3

4

0

1

2

3

4

0 1 2 3 4 0 1 2 3 40 1 2 3 4
C A B

X=

0

1

2

3

4

(b) Data Access Pattern in the Tiling Loops

Figure 3.1: Tiled Matrix Multiplication: C = A x B

of the kernel loops. On the C64 chip, to make sure that this program fully utilizes the

on-chip memory resources, the programmers need to insert tile movement code manually

in the source code to move data tiles back and forth between the on-chip and off-chip

memory. Figure 3.3 shows the examples of the manually inserted code. In both examples,

no matter how the computations in thecontrolling loopsare decomposed among the cores,

for the tiling loops, small data tiles are moved into the on-chip SRAM memory and the

associated computations are performed there. Figure 3.3(a) shows the naive version, in

which the array elements are copied into the on-chip memory one by one. A better version

is shown in Figure 3.3(b), which utilizes the off-chip memory bandwidth more efficiently.

In both versions, the programmers need to study the originalsource code carefully to

figure out how to write correct and efficient data movement code. They are forced to deal

with the convoluted array index calculation, which makes their work more complicated.

A simpler approach is to let the compiler to generate the required data movement

29

0 /* allocate on-chip memory */
1 AA=(float *)sram_malloc(...);
2 BB=(float *)sram_malloc(...);
3 CC=(float *)sram_malloc(...);
4 ...
5 /* item-by-item memory copy */
6 for (i=ii;i<min(ii+b,n);i++)
7 for (j=jj;j<min(jj+b,n);j++)
8 for (k=kk;k<min(kk+b,n);k++){
9 AA[i-ii][k-kk] = A[i][k];
10 BB[k-kk][j-jj] = B[k][j];
11 CC[i-ii][j-jj] = C[i][j];
12 }
13
14 /* MxM performed on-chip */
15 for (i=0;i<min(b,n-ii);i++)
16 for (j=0;j<min(b,n-jj);j++)
17 for (k=0;k<min(b,n-kk);k++)
18 CC[i][j]+=AA[i][k]*BB[k][j];
19
20 /* copy out the results */
21 for (i=ii;i<min(ii+b,n);i++)
22 for (j=jj;j<min(jj+b,n);j++)
23 for (k=kk;k<min(kk+b,n);k++)
24 C[i][j]=CC[i-ii][j-jj];
25 ...

Figure 3.2: Examples of Manually Inserted Data Movement Code (Pseudo Code): A
naive version

code automatically. In [79, 80], the authors present their implementation of this idea on

the IBM CELL processor. However, in [81] it is revealed that theperformance of the

automatically generated code is not as good as the performance of the manually reformed

code2. The reason is not because the compiler can not generate the optimal code, but

because the static analysis performed by the compiler is notpowerful enough to capture

all the beneficial cases (which is a well-told story). This motivates us to develop a novel

semi-automatic approach: the programmer specifies the places in their program where

efficient data movement is needed, while the compiler generates the required high quality

2 Readers are referred to Figure12 in [81]

30

0 /* allocate on-chip memory */
1 AA=(float *)sram_malloc(...);
2 BB=(float *)sram_malloc(...);
3 CC=(float *)sram_malloc(...);
4 ...
5 /* mcpy: optimized memory copy routine */
6 for (i=ii; i<min(ii+b,n); i++)
7 mcpy(&CC[i-ii][0], &C[i][jj], min(b,n-jj))
8 for (k=kk; k<min(kk+b,n); k++)
9 mcpy(&BB[k-kk][0], &C[k][jj], min(b,n-jj))
10 for (i=ii; i<min(ii+b,n); i++)
11 mcpy(&AA[i-ii][0], &A[i][kk], min(b,n-kk))
12 ...
13 /* on-chip calculation */
14 for (i=0; i<min(b,n-ii); i++)
15 for (j=0; j<min(b,n-jj); j++)
16 for (k=0; k<min(b,n-kk); k++)
17 CC[i][j]+=AA[i][k]*BB[k][j];
18 ...
19 /* copy out the results */
20 for (i=ii; i<min(ii+b,n); i++)
21 mcpy(&C[i][jj], &CC[i-ii][0], min(b,n-jj))
22 ...

Figure 3.3: Examples of Manually Inserted Data Movement Code (Pseudo Code): An
optimized version

code accordingly.

3.3 Tile Percolation

In this section, we will use a simple example to demonstrate how to implement

tile percolation. It includes three parts: the programmingAPI, the data movement code

generation in the compiler, and the required runtime support.

3.3.1 Programming API

In the design of the programming API for tile percolation, the following criteria

should be considered. First, it must be very simple and easy to use. Second, it must be

general enough to capture most of the common cases that can benefit from tile percolation.

31

#pragma omp percolate [tile ...]
#pragma omp tile ro (A[jdim(A), adim(A), Ldim(A)]..[j2, a2, L2][j1, a1, L1], ...)

wo (B[kdim(B), bdim(B),Mdim(B)]..[k2, b2,M2][k1, b1,M1], ...)
rw (C[ldim(C), cdim(C), Ndim(C)]..[l2, c2, N2][l1, c1, N1], ...)

(a) The definition of the tile percolation API

percolate: Directive name. It specifies a percolation region
tile: Directive name. It specifies a tile region and the tile descriptors
ro: Clause name. It specifies the tiles that are read-only in the current percola-

tion region.
wo: Clause name. It specifies the tiles that are write-only in the current perco-

lation region.
rw: Clause name. It specifies the tiles that are read and written in the current

percolation region.
A,B,C: Name of the host multi-dimensional data array
ji,ki,li: The index variable of the for loop that defines theith dimension of the tile
ai,bi,ci: Blocking size of theith dimension of the host multi-dimensional array (i.e.

A, B, andC).
Li,Mi,Ni: Size of theith dimension of the host multi-dimensional array
dim(..): The dimension of the multi-dimensional array

(b) The explanation of the tile percolation API

Figure 3.4: The OpenMP API for tile percolation (C/C++)

Third, it should not bring much complexity to code generation and should also not cause

too much runtime overhead. According to these criteria, thetile percolation programming

API is designed as OpenMP pragma directives, shown in Figure3.4(a).

The tile percolation API has two new pragma directives: thepercolate direc-

tive and thetile directive. The percolate directive specifies apercolation region, which

is a block of code. At the beginning of the percolation region, on-chip storage will be

reserved for all data tiles that will be percolated into the on-chip memory. Then, all or

some of the data tiles accessed in the percolation region will be moved into the on-chip

memory and the corresponding computations will be performed there. At the end of the

percolation region, data tiles that contain the results of the computations are written back

to the off-chip memory (if necessary) and the reserved on-chip memory are freed.

The tile directive, on the other hand, provides the detailedinformation (type,

32

shape, size, etc.) of the data tiles that will be percolated into the on-chip memory. It

is always contained in a percolation region. The tile directive specifies atile region, in

which there is a set offor loops delimiting the bounds of the data tiles. In the tile di-

rective, following the key wordtile is a list of tile descriptors. The tile descriptors

are divided into three groups by the key wordsro, wo, andrw, which are theclause

names that identifyread-only, write-only, andread-writedata tiles. At the beginning of

the percolation region, data tiles specified in therw clause will be copied from the off-

chip memory into the on-chip memory (after the on-chip memory allocation). At the end

of the percolation region, data tiles specified in therw andwo clauses are copied back

to their home locations in the off-chip memory. For data tiles specified in thero clause,

they will be copied into the on-chip memory at the place wherethero clause is specified.

They will not be copied back to the off-chip memory at the end of the percolation region.

The associated code in the percolation region are adjusted to access the on-chip data tiles

in the computations.

The format of the tile descriptor is similar to the declaration of a multi-dimensional

array variable, except that each of the tile descriptordimension specifieris a 3-tuple, not

a singleton. The tile descriptor tells the compiler how the data tile is carved out from

the multi-dimensional data array that hosts it. To make the thesis easy to follow, we call

the multi-dimensional data array that hosts the current data tile as itshost array. The tile

descriptor contains the complete information of the host array. Therefore, the number of

dimension specifiers in the tile descriptor is the same as thedimension of the host array.

It is not necessarily the same as the dimension of the data tile.

For a dimension specifier[ji, ai, Li] (see Figure 3.4(a)), ”Li” is the size of theith

dimension of the host array (not the data tile). ”ai” is the blocking/tiling size of theith

dimension of the host array. This parameter is used to carve out the data tile from its

host array. Normally, if the dimension of the data tile is thesame as the dimension of

the host array, ”ji” is the index variable of afor loop in the tile region that traverse the

33

ith dimension of the data tile. If the dimension of the data tile is smaller than its host

array, the elementji in some dimension specifiers becomes trivial. Currently, we force

the programmers to put a ”∗” there as a place holder to let the compiler know that the

current dimension of the host array has been squashed away inthe dimension space of

the data tile. An intuitive example of this case is the expressionA[0][i][j] guarded

by loopi and loopj. It actually represents a 2-D plane, although the expression has 3

dimension specifiers.

The tile descriptor functions like a template and the associatedfor loops instan-

tiate this template. To make the code generation easy, currently, a writable tile descriptor

(specified in therw or thewo clause) can only has one instantiation. The read-only tiles

(specified in thero clause) can have multiple instantiations. Example is givenin Figure

3.5. To put it in a simple way, roughly, the percolate directive and the tile directive tell

the compilerwherethe data tiles will be percolated and the tile descriptors tell the com-

piler how the data tiles are percolated. The code example that shows the usage of the tile

percolation API is in Figure 3.5. The detailed explanation will be presented in the next

sub-section.

3.3.2 Code Generation

The code in Figure 3.5 shows how to use the tile percolation API. The pragma

at line 1 is the canonicalparallel for directive that specifies how the computation

iterations are distributed among the parallel threads. Thepragma at line 5 is a perco-

late directive and line 8 is a tile directive. The percolate directive specifies a perco-

lation region, from line 6 to 16. The tile directive specifiesa tile region, from line

10 to 15, in which there are there data tiles, represented by ”A[i,b,n][k,b,n]”,

”B[k,b,n][j,b,n]”, and ”C[i,b,n][j,b,n]”. The first two tiles are read-only

and the last one is both readable and writable in the current percolation region. They

direct the compiler to generate the correct data percolation and computation code.

34

0
1 #pragma omp parallel for collapse(2)
2 for (ii=0; ii<n; ii+=b)
3 for (jj=0; jj<n; jj+=b)
4 {
5 #pragma omp percolate
6 {
7 for (kk=0; kk<n; kk+=b)
8 #pragma omp tile ro (A[i,b,n][k,b,n],B[k,b,n][j,b,n]) \
9 rw (C[i,b,n][j,b,n])
10 {
11 for (i=ii; i<min(ii+b,n); i++)
12 for (j=jj; j<min(jj+b,n); j++)
13 for (k=kk; k<min(kk+b,n); k++)
14 C[i][j]+=A[i][k]*B[k][j];
15 }
16 }
17 }
18

Figure 3.5: Pseudo Code of the Tile Percolation Example

The tile descriptor ”C[i,b,n][j,b,n]” specifies a data tile contained in the

host arrayC, a 2Dn × n matrix. In this tile descriptor, ”C” provides the name of the

host array, which also tells the compiler the type of the dataelement of the tile. ”n” in

the dimension specifier tells the size of the each dimension of the host array. ”b” reveals

how the matrix is tiled. ”i” and ”j” are two index variables that inform the compiler

that thefor loops at line 11 and 12 are used to construct the data tile. Since the lower

and upper bounds of ”i” and ”j” are fixed in the current percolation region, there is only

one instantiation for this tile template (i.e. descriptor). The clause name ”rw” indicates

that this data tile will be read and written in the current percolation region. So, it will be

copied into the on-chip memory at line 6, where the percolation region starts. It will also

be copied out to off-chip memory at line 16, where the percolation region ends.

Similarly, data tile ”A[i,b,n][k,b,n]” and ”B[k,b,n][j,b,n]” are con-

tained in host array ”A” and ”B”, which are also 2Dn × n matrix. Since both of them

are read-only data tiles, they are copied into the on-chip memory at line 8, where they

35

are specified in thero clause. They do not need to be copied back to the off-chip mem-

ory at the end of the percolation region. Because the lower andupper bounds of ”k” are

changing (line 7), as we may notice, there are multiple instantiations for these two tile

descriptors. All instantiations of the same data tile will reuse the same memory block

allocated to it. The example is shown in Figure 3.6.

Figure 3.6 presents the code generated for the tile percolation program in Figure

3.5. First, it allocates on-chip memory for all three data tiles (line 5 to 7). This is achieved

by calling the runtime routine_sram_malloc, which is inserted in by the compiler.

The size of the data tile is calculated by multiplying each ofits dimension size, which

is obtained from its blocking size. This guarantees that thememory block allocated is

big enough to hold the corresponding data tile. If the memoryallocations succeed, the

read-write data tiles will be copied into the on-chip memoryby calling the runtime library

routine_copy2Don (line 16). Otherwise, no data movement happens and the program

execution jumps to the original code (line 12), where computations are performed on

off-chip data tiles (line 36).

The other two read-only data tiles are percolated into the on-chip memory between

thefor loops at line 18 and 25. This location corresponds to the place in the original code

where they are specified in thero clause. Thefor loops between line 25 and 28 per-

form matrix multiplication on ”_AA[][]”, ” _BB[][]”, and ”_CC[][]”, which are all

located in the on-chip memory. After one kernel computation(line 25 to 28) is finished,

the new instantiation of ”_AA[][]” and ”_BB[][]” are copied from the off-chip mem-

ory into the on-chip memory and are stored in the same memory block. Then it begins

the next iteration. Before exiting the percolation region, the rw data tile ”_CC[][]”

is copied back to its home location in the off-chip memory (line 32). Meanwhile, the

on-chip memory storage allocated to all the percolated datatiles are freed.

To generate the code like in Figure 3.6, the compiler needs tohandle three tasks:

(1) generate code for managing on-chip memory;(2) generate code for managing memory

36

1 {
2 /* Enter the percolation region.
3 Allocate on-chip memory for all data tiles */
5 _CC=(float *)_sram_malloc(sizeof(float)*b*b);
6 _AA=(float *)_sram_malloc(sizeof(float)*b*b);
7 _BB=(float *)_sram_malloc(sizeof(float)*b*b);
8
9 if (_CC==NULL || _AA==NULL || _BB==NULL)

10 {
11 _sram_free(_AA); _sram_free(_BB); _sram_free(_CC);
12 goto orig;
13 }
14
15 /* Copy "rw" data tiles from off-chip memory

to on-chip memory */
16 _copy2Don(sizeof(float), _CC, &C, n, n, ii, jj, \

min(b,n-ii),min(b,n-jj));
17
18 for (kk=0; kk<n; kk+=b)
19 {
20 /* Copy "ro" data tiles from off-chip memory

to on-chip memory */
21 _copy2Don(sizeof(float), _AA, &A, n, n, ii, kk, \

min(b,n-ii),min(b,n-kk));
22 _copy2Don(sizeof(float), _BB, &B, n, n, kk, jj, \

min(b,n-kk),min(b,n-jj));
23
24 /* on-chip calculation */
25 for (i=0; i<min(b,n-ii); i++)
26 for (j=0; j<min(b,n-jj); j++)
27 for (k=0; k<min(b,n-kk); k++)
28 _CC[i][j]+=_AA[i][k]*_BB[k][j];
29 }
30
31 /* copy out the results back to off-chip memory */
32 _copy2Doff(sizeof(float), _CC, &C, n, n, ii, jj, \

min(b,n-ii),min(b,n-jj));
33 _sram_free(_AA); _sram_free(_BB); _sram_free(_CC);
34 goto out;
35
36 orig:
37 /* Original code with out percolation */
38 ...
39 out:
40 }

Figure 3.6: Code generation example for tile percolation (Pseudo Code)

37

copy; (3) adjust the computation code to access on-chip data tiles. Weleave the discus-

sion of the first two items to the next sub-section, because they are mostly related to the

runtime. Here, we focus on the third problem.

Adjusting the computation code to access on-chip data tilesincludes two sub-

tasks: (i) calibrate the lower and upper bounds for eachfor loop that is involved in

traversing the elements of the data tile;(ii) update the tile access expressions accordingly.

These tasks are easy because the data tile is copied as one 2D array from its home location

(in which, the elements are physically scattered in memory)into a piece of physically

contiguous memory block (in which, the elements are consecutive). We only need to

know the base address of the memory block and the size of each dimension of the data

tile. The value of the tile’s dimension size can be easily obtained from its tile descriptor.

The base address of the memory block that assigned to the current data tile can be obtained

from the corresponding runtime function call (_sram_malloc). With this information,

it is easy for the compiler to generate the correct code. Mostof time, we just perform

a kind of simple 1-to-1 replacement. For example, the new lower bound of afor loop

is always set to zero and the new upper bound is calculated by subtracting the old lower

bound from the old upper bound.

3.3.3 Runtime Support

As we have mentioned in the last section, the tile percolation runtime needs to

handle the on-chip memory allocation and the memory copy forthe percolated data tiles.

We provide a set of routines (with clear interface) in the runtime library for the compiler.

The compiler, accordingly, would insert the required runtime function calls in the program

during code generation.

The runtime routines_sram_malloc and_sram_free are responsible for al-

locating on-chip memory for the percolated data tiles. To allocate the correct memory

storage for the tile, we need to know three values: (i) the number of dimensions of the

tile; (ii) the size of each dimension; and (iii) the type of each data element. The number

38

of dimensions of the tile is the number of non-trivial dimension specifiers in its tile de-

scriptor. The dimension size is always set to the blocking size. This guarantees that the

allocated memory block is big enough to hold any instantiation of the tile descriptor. The

type of the data element is obtained from the name of the tile descriptor.

For each percolation region, the ”all-or-none” policy is adopted in memory alloca-

tion. The program either continues execution afterall of its memory allocation requests

were satisfied, or, ifany of its memory allocation request failed, it jumps to the origi-

nal code to perform the computations on the off-chip data tiles. Because the compiler

guarantees that all memory allocations occur at the beginning of the percolation region

and all memory frees occur at the end of the percolation region, the memory allocation

failure would not cause dead lock among the concurrent OpenMP threads. This greatly

simplifies design of the runtime support and also simplifies code generation in compiler.

For the memory copy task, we provide the set of runtime routines presented in Fig-

ure 3.7. Currently, we support tile percolation for 1D-, 2D-,and 3D-array. They can cover

most of the practical cases. Each kind of multi-dimensionalarray has its own memory-

copy routines (see Figure 3.7(a)). The routines with the suffix ” on” are used to copy data

tiles from off-chip memory to on-chip memory, while the routines with the suffix ”off”

are used to copy data tiles from on-chip memory to off-chip memory. The parameters that

are required in the address calculation in these memory-copy routines are supplied in the

argument list. We use the ”long argument list” instead of the”packed argument structure”

because we try to avoid inserting unnecessary dynamic memory allocation function calls

in code generation. We feel that generating dynamic memory allocation code is tricky

and error-prone.

According to our design, there are some assumptions on the on-chip and the off-

chip data tiles. For the on-chip data tile, it must reside in acontiguous memory block. For

the off-chip data tile, it must be a sub-block of a multi-dimensional array and the multi-

dimensional array must also reside in a contiguous memory block. Because the percolated

39

_copy1Don(sz,_on,_off,D1,x,b1)
_copy1Doff(sz,_on,_off,D1,x,b1)
_copy2Don(sz,_on,_off,D1,D2,x,y,b1,b2)
_copy2Doff(sz,_on,_off,D1,D2,x,y,b1,b2)
_copy3Don(sz,_on,_off,D1,D2,D3,x,y,z,b1,b2,b3)
_copy3Doff(sz,_on,_off,D1,D2,D3,x,y,z,b1,b2,b3)
...

(a) The runtime routines for memory copy

_copy[1D|2D|3D]on: Runtime routines that copy the off-chip data tile into the
on-chip memory;

_copy[1D|2D|3D]off: Runtime routines that copy the on-chip data tile back to
the off-chip memory;

sz: Size of the element of the data tile;
on: The address of the on-chip memory block used to hold

the percolated data tile;
off: The address of the home location of the percolated data

tile in the off-chip memory;
D1,D2,D3: The size of each dimension of the percolated data tile,

from the lowest dimension to the highest dimension;
x,y,z: Position of the percolated data tile in the host array. It

is represented by the coordinate of its first element in
the host array, from the lowest dimension to the highest
dimension;

b1,b2,b3: Blocking size of each dimension of the host array, from
the lowest dimension to the highest dimension;

(b) The explanation of the runtime routines

Figure 3.7: The runtime routines for on-chip and off-chip memory copy

40

data tile is only a sub-block in its host array, its memory layout is not contiguous. Phys-

ically, it consists of many data strips (or rows) that are separated by an equal distance.

Hence, the parameters provided in the argument list should be able to be used to calculate

the start address and the size of each data strip in the tile. With the above assumptions,

it is easy to interpret the argument list of the memory-copy routines. For example, the

routine_copy2Don copies a 2D data tile from off-chip memory to on-chip memory.

The argument ”_off” gives the start address of its host array, (i.e. the addressof the first

element). ”D1” and ”D2” tell the dimension size of the array. ”x” and ”y” specify the

coordinates of the data tile in its host array. ”b1” and ”b2” reveal the blocking size of

each dimension of the host array. ”b1” and ”b2” are the default size (of each dimension)

of the percolated data tile. To handle the corner cases, the routine will calculate the effec-

tive size at runtime. The size of the data tile element is shown in ”sz”. With the above

information, it is easy for the runtime routine to calculatethe address and size of each

data strip and copy it around with the optimized library code. All these arguments are

provided in the tile percolation directives and can be easily extracted out by the compiler.

In essence, the arguments listed above characterize the position and the size of a

data tile and its host array accurately. It doesn’t matter whether this data tile and its host

array are real multi-dimensional array (in the language sense) or not. As long as all the ar-

ray access expression are affine functions of the loop indices, they can be declared (physi-

cally) as an 1D array but accessed by the programmers (logically) as a multi-dimensional

array. The compiler will take care of the convoluted indicescalculation.

3.4 Experiments

We have evaluated tile percolation with four scientific kernels (SAXPY, SASUM,

SGEMV, and SGEMM) [82] and two NAS benchmarks (EP and MG). Tile percolation

was implemented through source-to-source program transformation and was prototyped

in the Omni compiler [83]. The experiments were conducted onthe FAST simulator [70],

41

Table 3.1: FAST Simulation Parameters (Courtesy to Juan del Cuvillo!)

Component # of units Params./unit

Threads 160 single in-order issue, 500MHz

FPUs 80 floating point/MAC, divide/square root

I-cache 16 32KB

SRAM (on-chip) 160 30KB

DRAM (off-chip) 4 256MB

Crossbar 1 96 ports, 4GB/s port

A-switch 1 6 ports, 4GB/s port

an execution-driven and binary-compatible C64 simulator with accurate instruction tim-

ing. FAST accurately simulates the functional behavior andother hardware components

such as thread units, on-chip and off-chip memory, and 3D-mesh network, which are

shown in Table 3.1 [84].

Table 3.23 gives the detailed timing of each operation simulated in theFAST

simulator [84]. exe is the execution time in the function unit anddelay represents the

latency before the result of the instruction becomes available to the depending instruction.

The preliminary experiment results are shown in Figure 3.8,Figure 3.9, and Figure

3.10. After applying tile percolation, the speedup of all testcases get significant improve-

ment. The greatest improvement happens on SGEMM4. This testcase hasO(n3) floating-

point operations but only accessO(n2) data. However, without reusing the data that have

been brought into on-chip memory by the previous computations, the program has very

poor scalability. Because it would haveO(n3) number of memory accesses going into

the off-chip memory. This would quickly exhaust the off-chip bandwidth. Without using

on-chip memory, its diminishing return is 2-thread. After applying the tile percolation

3 Courtesy to Juan del Cuvillo!
4 We use256 × 256 matrix, the data tile is16 × 16

42

Table 3.2: Instruction Timing of FAST Simulator (Courtesy to Juan del Cuvillo!)

Instruction type exe delay

Bit gather 1 1

Branches 2 0

Count population 2 0

Integer multiplication 1 6

Integer division signed 1 69

Integer division unsigned 1 68

Integer remainder signed 1 70

Integer remainder unsigned 1 69

Move indirect register 3 0

Floating add, subtract and conv. 1 5

Floating multiplication 1 6

Floating multiply and add 1 11

Floating divide double 1 63

Floating divide single 1 34

Floating square root double 1 62

Floating square root single 1 33

Floating mult. and accumulate 1 6

Memory operation (local SRAM) 1 2

Memory operation (global SRAM) 1 31

Memory operation (off-chip DRAM) 1 57

All other operations 1 0

43

 0

 5

 10

 15

 20

 25

 30

 1 2 4 8 16 32 64

S
p
e
e
d
u
p

Number of Threads

w/ Tile Percolation
w/o Tile Percolation

(a) SASUM

 0

 5

 10

 15

 20

 25

 30

 1 2 4 8 16 32 64

S
p
e
e
d
u
p

Number of Threads

w/ Tile Percolation
w/o Tile Percolation

(b) SAXPY

Figure 3.8: Experiment Results of SASUM and SAXPY: Comparison of Speedup

44

 0

 5

 10

 15

 20

 25

 30

 1 2 4 8 16 32 64

S
p
e
e
d
u
p

Number of Threads

w/ Tile Percolation
w/o Tile Percolation

(a) SGEMV

 0

 5

 10

 15

 20

 25

 30

 1 2 4 8 16 32 64

S
p
e
e
d
u
p

Number of Threads

w/ Tile Percolation
w/o Tile Percolation

(b) SGEMM

Figure 3.9: Experiment Results of SGEMV and SGEMM: Comparison of Speedup

45

 0

 5

 10

 15

 20

 25

 30

 1 2 4 8 16 32 64

S
p
e
e
d
u
p

Number of Threads

w/ Tile Percolation
w/o Tile Percolation

(a) EP

 0

 5

 10

 15

 20

 25

 30

 1 2 4 8 16 32 64

S
p
e
e
d
u
p

Number of Threads

w/ Tile Percolation
w/o Tile Percolation

(b) MG

Figure 3.10: Experiment Results of EP and MG: Comparison of Speedup

46

optimization, the number of memory accesses has been reduced to O(n2(1 + 2n/b)). Its

speedup increased from less than 4 to around 12. For other testcases, their floating-point

computations areO(n2) (SGEMV) orO(n) (EP). So their speedup enhancement is not as

big as SGEMM.

An interesting finding is that, without applying tile percolation, most testcases’

speedup diminishing return point is at 16-thread. They are SASUM, SAXPY, EP, and

MG. The speedup diminishing return point of SGEMV is 8-thread, while for SGEMM, it

is 2-thread. For SASUM, its memory accesses and floating-point operations are the same.

This reveals that, without on-chip data reuse, the off-chipbandwidth would be saturated

when there are more than running 16 threads.

3.5 Summary

Writing a parallel program for multicore processor is already a very difficult task.

It is even more difficult if the multicore processor has user-managed memory hierarchy,

like the IBM Cyclops-64 processor. On this kind of processor, the programmers not

only need to take care of program parallelization, but also need to tackle data movement.

Although many efforts have been made to develop automatic data movement code gener-

ation [85, 80, 79], it only proves its efficiency on a limited class of problems.

In this chapter, we have proposed a semi-automatic approachto data movement

code generation. This novel approach is termed astile percolation. It provides the pro-

grammers with a set of OpenMP-like directives. The programmers can annotate the their

programs with these directives to tell the compilerwhereandhowdata movement should

be performed. Accordingly, the compiler will generate the optimized data movement code

and the correct computation code based on the information provided in the tile percola-

tion directives. That way, the programmers can save themselves from writing tedious and

error-prone data movement code.

Tile percolation is a kind of OpenMPtile aware parallelizationtechnique [32] de-

veloped for the IBM Cyclops-64 multicore processor. As far as the author is aware, this is

47

the first research that try to develop pragma directives for data movement code generation

in OpenMP. The tile percolation directives are orthogonal to the canonical OpenMP par-

allelization directives. This chapter shows that the tile percolation directives can be used

together with the traditional OpenMP parallelization directives. Meanwhile, they can also

be used independently in the parallel programs written withPthread library. Experiments

conducted on the Cyclops-64 processor show that tile percolation can enhance the uti-

lization of the Cyclops-64 on-chip memory, which turns out toimprove the performance

and scalability of the programs. This implements an efficient performance portingfor

OpenMP programs developed for the traditional SMP system.

48

Chapter 4

THREAD-LEVEL DECOUPLED ACCESS/EXECUTION

Cyclops-64 is a many-core processor with user-managed memory hierarchy. For

OpenMP programs running on this processor, a frequently used computing paradigm is:

(i) copy data into on-chip memory; (ii) perform computations on the chip; (iii) copy

results back to off-chip memory. Obviously, hiding memory copy latency is very cru-

cial to the performance of this computing paradigm. The traditional solution is to use

the asynchronous DMA transfer to overlap computation and memory copy, like the IBM

CELL processor. However, DMA is not supported in the Cyclops-64 processor. There-

fore, in this chapter, we propose a software solution, called Thread-Level Decoupled

Access/Execution (TL-DAE for short). It is a data-driven execution model for OpenMP

programs running on the Cyclops-64 processor. The TL-DAE execution model is inspired

by the canonical decoupled architecture. In our design, data movements and computa-

tions are decoupled implicitly by OpenMP compiler. At runtime, two different groups of

threads are spawned: thecomputationthreads and thepercolationthreads. Computation

threads execute computation code while percolation threads execute data movement code.

The execution of computation thread and percolation threadcan slip with respect to each

other, so percolation thread can run further ahead than computation thread and fetch data

for it. In this chapter, we will not only develop the runtime techniques used to implement

the TL-DAE execution model, but also propose the required TL-DAE programming inter-

face that is used by OpenMP compiler to generate the decoupled code. We have evaluated

the TL-DAE execution model by using two OpenMP task benchmarks. Experimental re-

sults show significant performance enhancement.

49

4.1 Introduction

The IBM Cyclops-64 (C64) [70, 11] is a many-core processor with user-managed

memory hierarchy. As shown in Figure 1.1, the C64 chip has 160 homogeneous process-

ing cores. The chip has 512KB instruction cache but no data cache. Instead, each core

contains a small amount of SRAM (5.2MB in total) that can be configured into either

Scratchpad Memory (SPM), or Global Memory (GM), or both in combination. Off-chip

DRAM are attached onto the crossbar switch through 4 on-chip DRAM controllers. All

memory modules are in the same address space and can be accessed directly by all pro-

cessing cores [13]. However, different segments of the memory address space have dif-

ferent access latencies and bandwidths. Apparently, the on-chip memory is faster and has

huge access bandwidth, while the off-chip memory is slower and has very limited access

bandwidth. See Figure 1.2 for the detailed parameters of theC64 memory hierarchy.

Given an segmented memory model like in the C64 processor, a3-step compu-

tation paradigm[26, 86] is frequently used, i.e.(1) copy data from off-chip memory to

on-chip memory;(2) perform computations on the data in on-chip memory;(3) copy com-

putation results back to off-chip memory Because of the lengthy off-chip memory access

latency, it is desired to hide the memory copy latency by overlapping computations and

data movements. On C64, the major bottleneck of the multi-level memory hierarchies is

between the on-chip and off-chip memory (like in all other processors), so our discussion

will only focus on the data movement across this interface.

Usually, the overlapping is achieved by using double buffering [26] and asyn-

chronous DMA transfer that supported in hardware, like we have seen in the IBM CELL

processor [87, 88]. However, the hardware design for DMA is very complex and the

runtime overhead of DMA is disproportionally high [27]. In [27], authors report that, on

a 3.2GHz CELL processor, for a single DMA (128 bytes, 128-byte aligned), the DMA

setuptime is 297.7ns (≈ 900 cycles). But the real DMAtransfer only takes6.09ns

(≈ 18 cycles). Taking all latencies into account, it costs more than1000 cycles to transfer

50

a 128-byte data block from main memory to local storage in theCELL processor. Similar

numbers can also be observed on multi-DMA and DMA-list. Due to these reasons, DMA

is not supported in C64. Therefore, we must resort to some kindof software solutions to

overlap computation and data movement operations.

In this chapter, we propose such a software solution, which is termedThread-

Level DecoupledAccess/Execution (TL-DAE for short). It is inspired by the original

hardware based DAE [28, 29], in which memory access (operands fetch and results store)

and computation execution arearchitecturallydecoupled and thus can be maximally over-

lapped. Not like the hardware based DAE, TL-DAE is developedas a software execution

model for OpenMP programs running on the C64 processor. In ourdesign, data move-

ment code and computation code are decoupled implicitly by OpenMP compiler at com-

pile time. At runtime, two different groups of threads are spawned: thecomputation

threads and thepercolationthreads. Computation thread runs computation code while

percolation thread runs data movement code. The execution of computation thread and

percolation thread can slip with respect to each other, so percolation thread can run further

ahead than computation thread and fetch data for it. To achieve dynamic load balancing

among the threads, the work-stealing policy [89] is used to schedule both computation

tasks and percolation tasks. Besides, a computation thread will not be scheduled until

all the data it needs in computation are copied from off-chipmemory to on-chip mem-

ory. Hence, TL-DAE is also considered as a data-driven execution model for OpenMP

programs running on C64.

To help OpenMP compiler decouple the program, we propose theTL-DAE pro-

gramming interface for the the programmers. The TL-DAE programming interface is a set

of OpenMPtile aware parallelization[30] pragma directives. Programmers can use these

directives to annotate their programs to specify where and how data movement would be

performed. OpenMP compiler, accordingly, will interpret these directives and generate

the correct decoupled data movement code.

51

The major contributions of this chapter are as follows: (a) The design and im-

plementation of the Thread-Level Decoupled Access/Execution (TL-DAE) model for

OpenMP programs running on a many-core processor with user-managed memory hi-

erarchy; (b) The design of the TL-DAE programming interfacethat can be used to help

OpenMP compiler to generate decoupled code; (c) Detailed experiments and performance

analysis of the OpenMP task benchmarks that use the TL-DAE execution model. The ex-

perimental results demonstrate the effectiveness of TL-DAE execution model.

The remainder of this chapter is organized as follows. In Section 4.1, we will

use a motivating example to demonstrate why thread-level decoupled access/execution is

necessary. In Section 4.3, we present the design and implementation of the TL-DAE ex-

ecution model, including TL-DAE API, TL-DAE code generation, and TL-DAE runtime

support. We report our experimental results in Section 4.4 and draw our conclusion in

Section 4.5.

4.2 Motivation

In this section, we will use a motivating example to demonstrate why thread-level

decoupled access/execution is necessary and also possiblefor OpenMP programs running

on the C64 processor. We will also derive the framework of the TL-DAE execution model

in this section.

The code in Figure 4.1 is the major part of thesparseLU(Sparse LU Decompo-

sition) benchmark from the Barcelona OpenMP Task Suite (BOTS)[90]. In order not to

waste memory storage on sub-matrices with all zero elements, thesparseLUprogram uses

a 2-level hierarchical data structure to store the sparse matrix, in which theall-zerosub-

matrix is shrank to anil pointer. Figure 4.1(b) shows the details of this data structure.

ThesparseLUprogram performs computations only onnon-zerosub-matrices1.

1 In the sparseLU benchmark, all diagonal sub-matrices are initialized to non-zero
matrix

52

1 ...
2 #define NB 100
3 #define B 100
4 ...
8 void fwd(float *diag, float *col) { ...; }
9 void bdiv(float *diag, float *row) { ...; }

10 ...
41 int main(int argc, char* argv[]) //uses A
42 {
43 ...
44 float *A[NB][NB];
45 ...
46 #pragma omp parallel single
47
48 for (kk=0; kk<NB; kk++) {
49 lu0(A[kk][kk]);
50 {
51 for (jj=kk+1; jj<NB; jj++)
52 if (A[kk][jj] != NULL)
53 #pragma omp task firstprivate(kk, jj) shared(A)
54 fwd(A[kk][kk], A[kk][jj]);
55
56 for (ii=kk+1; ii<NB; ii++)
57 if (A[ii][kk] != NULL)
58 #pragma omp task firstprivate(kk, ii) shared(A)
59 bdiv (A[kk][kk], A[ii][kk]);
60 }
61
62 #pragma omp taskwait
77 ...
78 }
79

Figure 4.1: The OpenMP Version of thesparseLUSource Code

53

5 void bdiv(float *diag, float *row)
6 {
7 int i, j, k;
8
9 for (i=0; i<B; i++)

10 for (k=0; k<B; k++) {
11 row[i*B+k] = row[i*B+k] / diag[k*B+k];
12 for (j=k+1; j<B; j++)
13 row[i*B+j] = row[i*B+j] - row[i*B+k]*diag[k*B+j];
14 }
15 }

Figure 4.2: bdiv: the OpenMPtaskfunction used insparseLU

30 void fwd(float *diag, float *col)
31 {
32 int i, j, k;
33
34 for (j=0; j<B; j++)
35 for (k=0; k<B; k++)
36 for (i=k+1; i<B; i++)
37 col[i*B+j] = col[i*B+j] - diag[i*B+k]*col[k*B+j];
38 }

Figure 4.3: fwd: the OpenMPtaskfunction used insparseLU

The code is parallelized by using the OpenMP task directive [91]. According to

the specification of OpenMP 3.0 [5], each time the program execution reaches line 53 (and

also line 58), an OpenMP task is constructed and is put in the task pool. OpenMP threads

in the current team fetch tasks from task pool and execute thefunctions specified in the

task. In this example, functionfwd() will be executed, with sub-matrixA[kk][kk]

andA[kk][jj] as real arguments. The same scenario repeats at line 58.

To port this piece of OpenMP code to C64, we need to consider theheterogeneity

of the C64 memory model and try to leverage the fast on-chip memory as much as we

can. This is concerned with moving the associated sub-matrices into and out of on-chip

memory. A naive approach is to insert data movement code manually in functionfwd(),

54

B=100
NB=100\0 \0

\0 \0 \0
\0 \0\0

\0 \0\0\0
\0 \0 \0

\0

\0

\0

A[NB][NB]

B*B

B*B

B*B

B*B

B*B

B*B

B*B

Figure 4.4: The 2-level hierarchical data structure used insparseLUcode

1 void fwd(float *diag, float *col)
2 {
3 Copy the matrix pointed to by *diag into on-chip memory;
3 Copy the matrix pointed to by *col into on-chip memory;
4 Perform computations on the on-chip copies of the matrices
5 pointed by *diag and *col;
6 Copy computation results back to off-chip memory;
7 }

Figure 4.5: An Intuitive Approach: Synchronous Data Movement

55

just right before and after the computation code. See pseudocode in Figure 4.5. The

problem of this approach is obvious. Data movement code are embedded in the main

trunk of the thread. The real computations can not start execution until all data it needs

are copied into on-chip memory. There is no overlapping between data movement and

computation.

The inadequacy of this approach motivates us to explore a newmethod, i.e. com-

pletely decouple computations and data movements of the program and use independent

threads to execute them. This is possible for the C64 processor because there are 160

thread units on the chip. One can always find extra or idle thread units that can be used

for data movement. By using this method, we will reduce the memory latency hiding

problem to a thread scheduling problem, which can be handledefficiently by OpenMP

runtime library.

4.3 Thread-Level Decoupled Access/Execution

In this section, we first give an overview on the TL-DAE model.Then we intro-

duce the techniques we proposed to implement the TL-DAE execution model, including

the programming interface, code generation, and the TL-DAEruntime design.

4.3.1 Overview

The first step of this approach is to ”separate” computation code and data move-

ment code in the program. Actually, there isno data movement code in the original

program (that’s why we surround ”separate” in quotation marks). We need to add data

movement code into the program either manually or automatically (i.e. let OpenMP com-

piler generate it). Although it is not difficult for programmers to write data movement

code and they also have more flexibility to choose how to manage on-chip memory, we

found that such kind of flexibility brings huge amount of difficulties to the compiler to in-

terface the data movement code with OpenMP runtime library.For this reason, we prefer

to shipping this task from programmer to compiler.

56

To help OpenMP compiler generate data movement code, we propose the TL-DAE

programming interface. The TL-DAE API is actually a kind ofTile Aware Parallelization

(TAP) [92] technique proposed for OpenMP programs running on multi/many-core pro-

cessors with user-managed memory hierarchy. The TL-DAE programming interfaces are

OpenMP pragma directives that can be used by programmers to annotate their program,

to tell OpenMP compiler where and how data movement would be performed. Compiler

will interpret these information and generate correct datamovement code. We will present

more details about TL-DAE API in the next section.

In the second step, the execution of the decoupled program will be user-managed

by the TL-DAE runtime system. The design of TL-DAE runtime follows the idea of

OpenMP task runtime. Instead of using one task pool, we use two kinds of task pool: the

percolationtask pool and thecomputationtask pool. The master thread first spawn a team

of slave threads (i.e. the computation threads) and a group of percolationthreads. Then, it

”executes” the program, constructs percolation tasks and put them in the percolation task

pool. The structure of the percolation task contains enoughinformation for the percola-

tion thread to construct computation tasks. The execution of percolation threads follow

OpenMP task model. After a percolation thread finishing one task, it would construct a

computation task from the percolation task structure and put it into the computation task

pool. The computation threads consume the tasks in the computation task pool. After

a computation thread finishing its job, it will construct a percolation task which tells the

the percolation thread how to store the computation resultsback to off-chip memory. This

task will be put in the percolation task pool by the current computation thread. We present

the design of TL-DAE runtime in details in the next section.

4.3.2 TL-DAE Programming Interface

The purpose of TL-DAE programming interface is to grant programmers a certain

extent of power to direct OpenMP compiler to generate decoupled data movement code.

In tradition, this part of work is assumed completely by compiler [93, 85], by using the

57

canonical static analysis techniques, such asloop nest optimization[94, 95]. For array-

intensive applications, the data access patterns can be easily inferred from loop constructs.

However, we found that this approach relies too much on the capabilities of compiler.

Sometimes a program’s data access pattern is very difficult to analyze by compiler. For

instance, for the program in Figure 4.1(a), before the OpenMP compiler can decide the

shape and size of the data block pointed to byfloat *diag (the first formal argument

of functionfwd()), it must be able to analyze the code in both functionmain() and

functionfwd() at the same time2. This indicates that we need to incorporate some kind

of IPA (Inter-Procedure Analysis) techniques [96] in the current OpenMP compiler. As

far as we know, such kind of IPA technique does not exist yet. Besides, developing such

kind of IPA technique in OpenMP compiler will greatly complicate the compiler design

while would achieve only limited effect on a very few number of benchmarks, just like

the currentauto-parallelizationtechniques.

In order to solve this problem, programmer’s interferencescould help a great lot,

i.e. programmer provides a certain amount of hints by annotating the code while compiler

use these hints to perform the required code transformation. This idea is the same as the

design philosophy of the OpenMP programming model. Based on this idea, we propose

the TL-DAE API as OpenMP pragma directive. See Figure 4.6.

We introduce a new directive:percolate. It must be used together with the

OpenMPtask directive. Semantically, thepercolate directive declares a percolation

region. Operand data blocks are copied into on-chip memory at the beginning of the

percolation region (including allocation of on-chip memory resources). Result data blocks

are copied back to off-chip memory at the end of the percolation region (including release

of on-chip memory resources). In between, the corresponding task function is executed.

All three parts are executed by independent threads in the TL-DAE model.

2 This is further complicated by the facts thatfwd() may be called by more than one
function.

58

#pragma omp percolate [altfunc(FUNC_NAME)] ARG_DESC[, ARG_DESC]
ARG_DESC :: TILE_DESC|SCALAR_DESC
TILE_DESC :: <rd|wt|rw, ADDR, TY, DIM, std|emb, \

[SZ][[SZ]]|[SZ,HSZ][[SZ,HSZ]]>
SCALAR_DESC :: <SCALAR_NAME=VALUE>

(a) TL-DAE percolation API

percolate: Directive name. It specifies a percolation region.
altfunc: Clause name. The ”altfunc” clause declares an alternative function

that will be used to perform the computation after the associated
data tiles were copied into on-chip memory.

ARG DESC: Argument descriptor.
TILE DESC: Tile argument descriptor.
rd|wt|rw: Percolation attributes.rd indicates that the data tile will be only

read into on-chip memory in the current percolation region;wt
indicates that the data tile will be only write out of on-chip memory
in the current percolation region;rw indicates that the data tile will
be both read into and write out of on-chip memory.

ADDR: Starting address of the tile.
TY: Tile element type. It specifies the type of the tile element.
DIM: Tile dimension. It specifies the dimension of the tile.
std: Tile attribute. It specifies that the current tile is astandalonetile.
emb: Tile attribute. It specifies that the current tile is anembeddedtile.
SZ: Size of the corresponding dimension of the tile.
HSZ: Size of the corresponding dimension of the host multi-dimension

array of the embedded tile.
SCALAR DESC: Scalar argument descriptor.
SCALAR NAME: Name of a particular scalar formal argument.
VALUE: Adjusted initial value that assigned to the corresponding scalar ar-

gument.

(b) Explanation of the TL-DAE tile percolation API

Figure 4.6: The OpenMP API for TL-DAE tile percolation (C/C++)

59

Thepercolate directive provides programmers a mechanism to specify which

data blocks will be copied into on-chip memory, which data blocks will be copied back

to off-chip memory, and what they look like (shape, size, andposition). Besides, if the

original task function(function guarded by thetask andpercolate directives) can

no longer be used to perform correct computations because ofthe changes made on data

layout, programmers can provide an alternate task functionthrough thealtfunc clause.

Once thealtfunc is used, the original function guarded by thetask directive is ig-

nored. Thereal task function becomes the one specified in thealtfunc clause.

Whether or not the real task function is changed, the associatedargument descrip-

tors are listed on thepercolate directive. Eachactualargument used by the real task

function has a corresponding argument descriptor placed onthat list, in the same order

as it in the function’s formal argument list. Although some information about the real ar-

guments can also be found in the task function’s declarationor call site, this redundancy

would greatly simplifies code generation in the next step.

We define two types of argument descriptors:tile descriptorandscalar descriptor.

Tile descriptor is used to depict actual arguments that are multi-dimensional data tiles.

Scalar descriptor is used to depict actual arguments of all other types.

Tile descriptor specifies the starting address (ADDR), the element type (TY), and

the dimension (DIM) of a particular data tile. Moreover, it also specifies whether the

current data tile will be read into on-chip memoryonly (rd); or will be written out from

on-chip memoryonly (wt); or will do both (rw). 3. In our current design, data tiles

are categorized into two types:standalonedata tile (indicated by the keywordstd) and

embeddeddata tile (indicated by the keywordemb). A standalone data tile’s existence, as

its name implies, is independent on any other data object. Semantically, standalone data

tile is self contained. Physically, standalone data tile isallocated in contiguous memory

3 We consider copy into on-chip memory asreadand copy out of on-chip memory as
write.

60

0
1 void MultiplyByDivideAndConquer (REAL *C,
2 REAL *A, REAL *B, unsigned MatrixSize,
3 unsigned RowWidthC, unsigned RowWidthA,
4 unsigned RowWidthB, int AdditiveMode);
5
6 void FastAdditiveNaiveMatrixMultiply (REAL *C,
7 REAL *A, REAL *B, unsigned MatrixSize,
8 unsigned RowWidthC, unsigned RowWidthA,
9 unsigned RowWidthB);
10

(a) Functions performing divide-and-conquer matrix-matrix multiplication

RowWidthA

A[][]

MatrixSize

MatrixSize

A[][]

on−chip memoryoff−chip memory

(b) Diagram of embedded matrix A

Figure 4.7: An example ofembeddeddata tile used in strassen benchmark

space. Examples of standalone data tile are the sub-matrices (pointed to byA[kk][jj])

used in the sparseLU program. See Figure 4.1.[SZ][[SZ]] specifies the size of each

dimension of the data tile.SZ can be a constant and can also be a variable. An 1-

dimension data tile with dimension size equaling 1 is actually a scalar. Programmers can

use this property to represent a big Cstruct in tile descriptor so that it can also be

copyin/copyout as a multi-dimensional data tile.

The embedded data tile, as its name implies, is itself part ofanother bigger data

object. In our design, this bigger data object must also be a multi-dimensional data array

61

of the same type. Logically, the embedded data tile is treated as a computation data unit,

like in most divide-and-conquer algorithms [97]. Physically, however, it is distributed

inside the body of a bigger multi-dimensional data array. So, embedded data tile is usually

not in contiguous memory space. An example of the embedded data tile is shown in

Figure 4.7. The code in Figure 4.7(a) is from thestrassenprogram of the Barcelona

OpenMP task benchmark suite. Both of the two functions are used in the recursive divide-

and-conquer algorithms [97]. They are called at the position where recursion termination

condition is satisfied. In order to access the elements in thesub-matrix, we not only

need to know the position, shape, and size of the sub-matrix,but also need to know the

shape and size of the host multi-dimensional data array. In our design, we deem that the

dimension of the embedded data tile is the same as the host multi-dimensional data array.

So, in the tuple[SZ,HSZ][[SZ,HSZ]],SZ is the dimension size of the embedded data

tile andHSZ is the size of the corresponding dimension of the host multi-dimensional data

array. These information are used by compiler to generate correct data movement code.

As Figure 4.7(b) shows, moving an embedded data tile from itsoriginal location

in off-chip memory to on-chip memory will change its data layout. Usually, the em-

bedded data tile will be copied row by row from non-contiguous locations in off-chip

memory into contiguous locations in on-chip memory. Although information in the tu-

ple[SZ,HSZ][[SZ,HSZ]] is enough for compiler to generate correct data movement

code4. It is far from enough for compiler to adjust every data-tile-element reference

statement in the original task function. Sometimes, this istoo difficult to be carried in

4 Actually, compiler does not generate the read data movementcode. It uses the param-
eters in the tuple[SZ,HSZ][[SZ,HSZ]] to generate stub code to call the correct
runtime library function. It is the runtime function that does the real job.

62

compiler5. That is why we provide thealtfunc clause. Programmer can write anon-

chip versionof the task function and supersede the original one by specifying it in the

altfunc clause.

Sometimes, programmers do not need to provide an alternate task function. Be-

cause the data-tile-element references in the original task function have already been

parametrized. Programmers only need to set those parameters correctly when calling

the original task function. See examples in Figure 4.7(a). The argumentsRowWidthC,

RowWidthA, andRowWidthB are used by the function to calculate correct offset of

each data tile row. For data tileA[][], B[][], andC[][] that are copied into contigu-

ous memory space, we can still call the original function butuse the adjusted real argu-

ments. For example, in both functions, because the on-chip data tileA[][] is embedded

in itself, RowWidthA equals toMatrixSize of A[][]. So, we can fix the value of

the real argumentRowWidthA toMatrixSize. This also applies onRowWidthB and

RowWidthC. Programmers can specify the fixup value in the scalar descriptor of the cor-

responding scalar argument. Currently, we only support thisin built-in data types. See an

use case in Figure 4.9, which is an example of embedded data tile. Figure 4.8 gives an

example of standalone data tile.

4.3.3 TL-DAE Code Generation

The design of TL-DAE code generation follows one rule: let TL-DAE runtime do

most of the dirty jobs and leave as less work for code generation as possible. Follow-

ing this rule, most of the real works, like task creation, task scheduling, data movement,

and task execution are performed by TL-DAE runtime routines. Therefore, the purpose

of TL-DAE code generation is to connect the OpenMP program tothe TL-DAE runtime

5 Two difficulties. OpenMP compiler need to perform some kind of inter-procedure
analysis before it can change any code in the task function; Second, OpenMP com-
piler needs to deal with the code versioning problem. Both issues are far above an
OpenMP compiler’s capability.

63

13
14 for (jj=kk+1; jj<NB; jj++)
15 if (A[kk][jj] != NULL)
16 #pragma omp task firstprivate(kk, jj) shared(A)
17 #pragma omp percolate <rw,A[kk][jj],double,2,std,[B][B]>,\
18 <rd,A[kk][kk],double,2,std,[B][B]>
19 fwd(A[kk][kk], A[kk][jj]);
20 ...
21

Figure 4.8: TL-DAE API Example 1: applied on standalone data tile

0
1 #pragma omp task firstprivate(MatrixSize) shared(C,A,B)
2 #pragma omp percolate
3 <rw,C,double,2,emb,[MatrixSize,RowWidthC][MatrixSize,RowWidthC]>,\
4 <rd,A,double,2,emb,[MatrixSize,RowWidthA][MatrixSize,RowWidthA]>,\
5 <rd,b,double,2,emb,[MatrixSize,RowWidthB][MatrixSize,RowWidthB]>,\
6 <MatrixSize>, <RowWidthC=MatrixSize>, <RowWidthA=MatrixSize>, \
7 <RowWidthB=MatrixSize>
8 FastAdditiveNaiveMatrixMultiply(REAL *C, REAL *A, REAL *B,
9 unsigned MatrixSize, unsigned RowWidthC,
10 unsigned RowWidthA, unsigned RowWidthB);
11

Figure 4.9: TL-DAE API Example 2: applied on embedded data tile

routines. The compiler will insert stub code in the program to prepare the required ar-

guments and call the correct runtime library functions withthe right arguments. Such

a design philosophy not only simplifies code generation in compiler but also makes the

TL-DAE framework more flexible.

In TL-DAE code generation and also runtime, the most frequently used data struc-

ture istldae task{}. This data structure, as its name implies, represents a taskunit

that will be scheduled and executed in the TL-DAE execution model. It contains complete

information that tells TL-DAE runtime how the current task will be performed. It is also

the major interface between the original OpenMP program andTL-DAE runtime. So, one

64

0

2

1

n−1

...

arg_desc

arg_desc

arg_desc

....
arg_desc

arg_array

phase
(0,1,2)

next

0

2

1

tasklet_array

istile

hdsz

dsz

dim

t_class

t_attr

old_addr

new_addr

val_ptr

size

tldae_task{}

prev

_tldae_write (struct tldae_task *)

"_tldae_task_func" (struct tldae_task *)

_tldae_read (struct tldae_task *)

Figure 4.10: Diagram of thetldae task{} structure

65

61
62 struct tldae_task
63 {
64 struct tldae_task *prev;
65 struct tldae_task *next;
66
67 /* index point to tasklet_array[], to indicate the current
68 * task function that will be executed
69 */
70 int phase;
71
72 /* this array stores function pointers that point to task
73 * functions currently, only three functions are supported
74 */
75 void (*tasklet_array[DEFAULT_MAX_TSK])(struct tldae_task *tsk);
76
77 /* this array stores the argument descriptors for
78 * each argument specified on the argument list of the
79 * task function.
80 */
81 struct arg_desc arg_array[DEFAULT_MAX_ARG];
82 };
83

Figure 4.11: Definition oftldae task{}

of the major work of TL-DAE code generation is to generate this data object and insert

correct runtime function invocations on it. Diagram in Figure 4.10 presents the internal

design of thetldae task{} data structure. As shown in the diagram,tldae task{}

consists of three parts:task phase(.phase), tasklet array(.tasklet array[]), and

argument descriptor array(.arg array[]). Figure 4.11 gives the source code of the

definition oftldae task{}.

• Line 70: .phase denotes the current phase of the task. It is an index into the

tasklet array at line 75.

• Line 75: .tasklet array[] stores the pointers to the functions that would be

executed during each phase of the current task. All functions recorded by tasklet

array take a pointer totldae task{} as the only argument and this pointer must

66

point to the current task..tasklet array[] and index.phase together de-

cide which function would be called if the current task is scheduled for running.

In the current design, only three tasklets are allowed6. .tasklet array[0]

and.tasklet array[2] point to two fixed functions:tldae read() and

tldae write(). while .tasklet array[1] points to a function gener-

ated by compiler, which is not the same in different cases. InFigure 4.10 we

use a temporary common nametldae task func to refer to all of them.

tldae task func is simply a wrapper of the original computation function

(In Figure 4.8, it is functionfwd().). Figure 4.13 and Figure 4.14 will give an

example of tldae task func().

• Line 81: .arg array[] contains the detailed information of every argument

that will be used in the execution of thetldae task func() tasklet. Each ar-

gument in the argument list of the original computation function has a slot (i.e.

struct arg desc{}) in this array, no matter the argument is a scalar or a

data tile pointer. Thetldae read() and tldae write() tasklets will scan

.arg array[] andcopyin/copyoutthe corresponding data tiles from/to off-chip

memory. tldae task func() uses these arguments to call the original task

function to perform the computations.

Figure 4.12 shows the source code of the definition ofarg desc, i.e. argument

descriptor. This piece of code is part of the TL-DAE runtime.Compiler need to create an

argument descriptor for each argument in the argument list of the original task function.

Figure 4.13 gives such an example of argument descriptor creation.

• Line 25: .istile is a flag to tell whether this is a scalar argument descriptor or

a tile argument descriptor.

6 It can be extended to have more tasklets and can deal with morecomplicated execu-
tion patterns.

67

18
19 #define DEFAULT_MAX_TSK 6
20 #define DEFAULT_MAX_DIM 6
21 #define DEFAULT_MAX_ARG 10
22
23 struct arg_desc
24 {
25 bool istile; /* scalar or tile */
26
27 int size; /* decided by the type of tile element */
28
29 void* val_ptr; /* point to arg value */
30
31 void* new_addr; /* the new start address of the tile after
32 * it has been copied into on-chip memory.
33 */
34
35 void* old_addr; /* the original start address of the tile
36 * in off-chip memory
37 */
38
39 enum tile_attr {
40 rd = 0; /* read-only */
41 wt = 1; /* write-only */
42 rw = 2; /* read-write */
43 } t_attr;
44
45 enum tile_class {
46 std = 0; /* standalone tile */
47 emb = 1; /* embedded tile */
48 } t_class;
49
50 int dim; /* tile dimension */
51
52 int dsz[MAX_DIM]; /* size of each dimension of the tile */
53 int hdsz[MAX_DIM]; /* size of each dimension of the
54 * multi-dimensional array that hosts
55 * this tile
56 */
57 };
58

Figure 4.12: Definition ofarg desc{}

68

• Line 27: For a scalar argument,.size records the size of the argument; for a

data tile argument,.size records the size of the data tile element. This informa-

tion comes from theTY field in the tile descriptor (TILE DESC) of the guarding

pragma.

• Line 29: .val ptr points to the memory location where the argument value is

stored. For a tile argument, it points to.new addr (line 31) in which the new on-

chip memory address of the data tile would be stored. For a scalar argument, it still

points to.new addr, to where the value of the scalar argument will be copied. In

this case, the rest fields ofarg desc are useless. They are only useful when the

argument is a data tile.

• Line 31: If the argument is a tile,.new addr stores the new address of the data

tile after it has been copied into the on-chip memory. Otherwise, .new addr

stores the value of the scalar argument. If the size of the scalar argument is bigger

than the size of.new addr, it will occupy the bytes following it, because the rest

fields in thearg desc{} structure is useless, so is undefined7.

• Line 35: For a data tile argument,.old addr stores its original address in off-

chip memory. For a scalar argument, the value of this field is undefined.

• Line 39: For a data tile argument,.t attr specifies the attributes of the tile, i.e.

whether it isread-only, write-only, or read-write. For a scalar argument, the value

of this field is undefined.

7 Currently, we use the same type of data structure for both datatile argument and
scalar argument. This may waste some memory if the argument is a small scalar. But
it simplifies code generation. In the future, this can be improved by having two types
of data structures for data tile and scalar argument.

69

• Line 45: For a data tile argument,.t class specifies whether it is astandalone

data tile or anembeddeddata tile. For a scalar argument, the value of this field is

undefined.

• Line 50: For a data tile argument,.dim records the dimensionality of the data tile.

For a scalar argument, the value of this field is undefined.

• Line 52: For a data tile argument,.dsz[] stores the size of each dimension of the

tile. It is undefined if the argument is a scalar.

• Line 53: For anembeddeddata tile,.hdsz[] stores the size of each dimension of

the host multi-dimensional array. For other kind of arguments, the content of this

array is undefined.

After finishing the introduction of the above two important data structures

tldae task{} andarg desc{}, we now present an example of code generation us-

ing the real OpenMP program. The original OpenMP source codeis shown in Figure

4.1. We will use the TL-DAE programming API to perform tile aware parallelization

on the task functionfwd() at line 54. The usage of the TL-DAE API is shown in Fig-

ure 4.8. The generated code is shown in Figure 4.13. The code is generated from the

ROSE source-to-source compiler with our modification to support TL-DAE code genera-

tion. The generated code without TL-DAE support from the unmodified ROSE compiler

is shown in Figure C.2. We illustrate the generated TL-DAE source code in the rest of

this section.

• Line 274: OUT 4 1527() is a function outlined by the ROSE compiler to deal

with theparallel directive shown at line 46 in Figure 4.1. ROSE compiler will

also outline all the private variables that would be used by each OpenMP thread

and put them in a separate data structure, i.e.void * out argv[], which is an

array that stores pointers pointing to each private variable. This greatly simplifies

70

274 void OUT__4__1527__(void **__out_argv)
275 {
276 int *ii = (int *)(__out_argv[3]);
277 int *jj = (int *)(__out_argv[2]);
278 int *kk = (int *)(__out_argv[1]);
279 float *(*A)[100UL][100UL] = \
280 (float *(*)[100UL][100UL])(__out_argv[0]);
281 for (*kk = 0; *kk < 100; (*kk)++) {
282 lu0((((*A)[*kk])[*kk]));
283 //#pragma omp taskgroup
284 {
285 for (*jj = (*kk + 1); *jj < 100; (*jj)++)
286 if ((((*A)[*kk])[*jj]) != ((float *)(((void *)0))))
287 {
288 struct tldae_task *tsk = TLDAE_get_task();
289 ((tsk)->phase) = 0;
290 (((tsk)->tasklet_array)[0]) = (_tldae_read);
291 (((tsk)->tasklet_array)[1]) = (OUT__3__1527__);
292 (((tsk)->tasklet_array)[2]) = (_tldae_write);
293 ((((tsk)->arg_array)[0]).istile) = 1;
294 ((((tsk)->arg_array)[0]).size) = (sizeof(float));
295 ((((tsk)->arg_array)[0]).val_ptr) = \
296 (void *)(&((((tsk)->arg_array)[0]).new_addr));
297 ((((tsk)->arg_array)[0]).old_addr) = \
298 (void *)(((*A)[*kk])[*kk]);
299 ((((tsk)->arg_array)[0]).t_attr) = 0;
300 ((((tsk)->arg_array)[0]).t_class) = 0;
301 ((((tsk)->arg_array)[0]).dim) = 2;
302 (((((tsk)->arg_array)[0]).dsz)[0]) = 100;
303 (((((tsk)->arg_array)[0]).dsz)[1]) = 100;
304 ((((tsk)->arg_array)[1]).istile) = 1;
305 ((((tsk)->arg_array)[1]).size) = (sizeof(float));
306 ((((tsk)->arg_array)[1]).val_ptr) = \
307 (void *)(&((((tsk)->arg_array)[1]).new_addr));
308 ((((tsk)->arg_array)[1]).old_addr) = \
309 (void *)(((*A)[*kk])[*jj]);
310 ((((tsk)->arg_array)[1]).t_attr) = 2;
311 ((((tsk)->arg_array)[1]).t_class) = 0;
312 ((((tsk)->arg_array)[1]).dim) = 2;
313 (((((tsk)->arg_array)[1]).dsz)[0]) = 100;
314 (((((tsk)->arg_array)[1]).dsz)[1]) = 100;
315 TLDAE_schedule_task(tsk);
316 }
317
318 }

Figure 4.13: Code Generation Example offwd() in sparseLU: the outlined function
that creates TL-DAE tasks

71

the generation of outlined function interface because all outlined functions generate

by ROSE only take one argument of the same type.

• Line 284: the code from line 284 to line 318 corresponds to the code fromline 50

to 78 in Figure 4.1. This piece of code is generated by ROSE compiler to imple-

ment the semantics of the OpenMPtask directive and the TL-DAEpercolate

directive in Figure 4.8.

• Line 288: For each OpenMP task, we generate atldae task{} structure for

it. A tldae task{} pool with a small number of freetldae task{} struc-

ture is maintained by the TL-DAE runtime in the on-chip SRAM. The function

TLDAE get task() allocate a free TL-DAE task unit from thetldae task{}

pool.

• Line 289-292: first the task phase is initialized to zero. Then the tasklet array

is initialized. The first tasklet istldae read, which copies critical data tiles

into on-chip memory. The second tasklet isOUT 3 1527 , an outlined wrapper

function that executes real task computation function. Figure 4.14 shows the source

code of this function. The third tasklet is set totldae write. It writes the

computation results back to off-chip memory. The task is performed starting from

the first tasklet to the last tasklet in the array. The traversal of this array is controlled

by the variable.phase. .phase is increased by one after the current tasklet is

finished.

• Line 293-314: the code between 293 and 314 is used to setup the argument descrip-

tors of the current task function -fwd(). This task function has two arguments.

Both of them are 2-D standalone data tiles. The values of righthand size of the as-

signments are coming from the information in the TL-DAEpercolate directive.

See Figure 4.8, line 17 & 18.

72

263
264 void OUT__3__1527__(struct tldae_task *tsk)
265 {
266 fwd((float *)(*(void **)((((tsk)->arg_array)[0]).val_ptr)),\
267 (float *)(*(void **)((((tsk)->arg_array)[1]).val_ptr)));
268
269 ((tsk)->phase)++;
270 TLDAE_schedule_task(tsk);
271 return;
272 }
273

Figure 4.14: Code Generation Example offwd() in sparseLU: the outlined TL-DAE
task function

• Line 315: After the creation of a new TL-DAE task unit, the TL-DAE runtime

function TLDAE schedule task() is called to insert the newly created task

unit into one of the task queue owned by a certain percolationthread. See Figure

4.15 for details.

• Line 317: The rest of the generated code is performing the same operations on

another task functionbdiv(). Since the these two pieces of code are very similar,

we omitted it here to avoid wasteful duplication of effort.

Figure 4.14 shows the source code of the outlined wrapper function

OUT 3 1527 .

• Line 266: the real task functionfwd() is called to perform the task works. The

purpose of outlining a wrapper function is to:(a) simplify the generation of the

versatile argument list of the task function. For here, the argument list string is very

simple.(b) have a place to place to put post-execution code.

• Line 269: increment.phase by one to advance to the next tasklet. Next time if

the current task is scheduled for running, it will run the next tasklet in the tasklet

array.

73

• Line 270: reschedule the same task unit. See Figure 4.15 for details.

As shown in Figure 4.15, the job of functionTLDAE schedule task() is to

insert the task unit into the corresponding task queue according to its phase (line 88, 95, &

102). If the task is finished, the runtime will reclaim the data structuretldae task{},

so it can reused by the next new task.

Figure B.1 in Appendix gives a set of important TL-DAE runtimefunctions

4.3.4 TL-DAE Runtime Support

The TL-DAE runtime library provides two set of functions. One set of functions

deal with data tile movement between on-chip memory and off-chip memory. The other

set of functions handle task creation, scheduling, and execution. These functions cooper-

ate with each other at runtime to implement decoupled access/execution for the program.

In the previous subsection, we already introduced two functions: tldae read

and tldae write. They are actually driver functions that control how data move-

ments are performed. These two functions traverse the argument array in the current

tldae task. For each data tile they encounter, different data movementfunctions are

called based on the tile’s dimension, type (std oremb), and attributes (rd/wt/rw). Argu-

ments used by the particular data movement function are obtained from the corresponding

fields of the argument descriptor. With accurate and complete information (shape, size,

position) of a data tile, it is easy to write the required data movementfunctions. Due to

the page limits, we omit the implementation details of this part.

There are two kinds of threads in TL-DAE runtime, i.e.percolationthread and

computationthread. Percolation threads perform data movement task while computation

threads deal with computations. The two groups are in separate name spaces. They are all

spawned by OpenMP master thread8. The number of each kind threads can be specified

8 To simplify code generation, the current implementation spawn all percolation
threads and computation threads at the very beginning of theprogram execution,
i.e. at the beginning of themain function.

74

80
81 void
82 TLDAE_schedule_task(struct tldae_task *tsk)
83 {
84 #define TLDAE_READ_PHASE 0
85 #define TLDAE_COMPUTE_PHASE 1
86 #define TLDAE_WRITE_PHASE 2
87
88 if (tsk->phase == TLDAE_READ_PHASE) {
89 /* insert the task into the task queue that belongs
90 * to one of the percolation threads. The task will
91 * be inserted at the TAIL of the queue.
92 */
93 TLDAE_task_enqueue_read(tsk);
94 }
95 else if (tsk->phase == TLDAE_COMPUTE_PHASE) {
96 /* insert the task into the task queue that belongs
97 * to one of the computation threads. The task will
98 * be inserted at the TAIL of the queue.
99 */
100 TLDAE_task_enqueue_compute(tsk);
101 }
102 else if (tsk->phase == TLDAE_WRITE_PHASE) {
103 /* insert the task into the task queue that belongs
104 * to one of the percolation threads. The task will
105 * be inserted at the HEAD of the queue.
106 */
107 TLDAE_task_enqueue_write(tsk);
108 }
109 else {
110 /* the task is finished. release the memory resources
111 */
112 TLDAE_put_task(tsk);
113 }
114
115 return;
116 }
117

Figure 4.15: Code Generation Example offwd() in sparseLU: the TL-DAE task
scheduling runtime function

75

by programmer either through environment variable or through runtime library function.

Each thread has its own task queue, which is called local taskqueue. A thread can access

any other threads’ task queue, which is termed remote task queue. Lock is provided to

guarantee mutually exclusive access on the task queues.

tldae
task

tldae
task

tldae
task

tldae
task

tldae
task

tldae
task

head

Figure 4.16: Task Queue implemented as a double-linked list

Each element of the task queue stores a pointer to atldae task data object. The

task queue is designed as a circular buffer.enqueue anddequeue operations can be

performed on both the head and the tail of task queue. However, both kind of threads only

take a task unit from the head of the task queue. Currently, thetask queue is implemented

as a double-linked list. Figure 4.16 shows the diagram.

After creating the percolation threads and the computationthreads, the master

thread traverses the loop (see line 14 in Figure 4.8). In eachiteration, it creates a task

unit, i.e. atldae task{} data object. When atldae task object is created, its task

index is set to zero and it is enqueued at the tail of the task queue owned by a percolation

thread. Since the task unit’s task index is zero, at the first time when it is scheduled for

execution by a percolation thread, the thread calls function tldae read() (pointed

to by task array[0]) to copy allrd/rw data tiles into on-chip memory. After fin-

ishing all data movement operations, this percolation thread increases the task index by

76

thread
computation

...
...

head

tail

taskq

...
...

head

tail

percolation
thread

taskq

thread
computation

...
...

head

tail

taskq

thread
computation

...
...

head

tail

taskq

thread
computation

...
...

head

tail

taskq

...
...

head

tail

thread
computation

taskq

copyout tasks enqueued at the head of a percolation task queue

computation tasks enqueued at the tail of computation task queue

Figure 4.17: 1 Percolation thread and 5 computation threads and their task queues

one and enqueue the sametldae task{} object at the tail of the task queue owned

by a computation thread. At the second time when this task unit is scheduled for exe-

cution, it is executed by a computation thread which callstask array[1], i.e. the

tldae task func(). This function performs the real computation on the data tiles

located in on-chip memory. After finishing computation, it increases the task index by

one and enqueues the sametldae task{} object at theheadof the task queue owned

by a percolation thread. This time, thetldae task{} object is inserted at the head of

the queue (see Figure 4.17) because flushing the result data tiles from on-chip memory to

off-chip memory has higher priority than moving data tiles up to on-chip memory. Oth-

erwise, the on-chip memory resources will be exhausted and will cause deadlock. Figure

4.17 shows an example of 1 percolation thread and 5 computation thread. It shows how

task units are flowed between percolation thread and computation threads.

After finishing creating all percolation tasks, the master thread becomes a com-

putation thread and joins other computation threads to perform computation tasks. Each

thread works on the task units stored its local task queue. When a new task unit is pro-

duced, the producer will use the round-robin policy to insert the new task unit into the

77

task queue of the corresponding thread group. After a threadfinishes all the task units in

its local task queue, it will try to steal task unit from otherthreads of the same group. It

also uses the round-robin policy to steal the task unit. These methods are used to achieve

load balance among the threads.

4.4 Experiments

We have used two OpenMP task benchmarks,sparseLUandstrassento evaluate

the TL-DAE execution model. The strassen benchmark was firstpreprocessed to trans-

form the the recursive invocation of the function to list traversal, just like thesparseLU

benchmark. We plan to extend the TL-DAE model to accommodaterecursive invocation

in our future work. The required TL-DAE code generation is achieved by source-to-

source translation.The experiments were conducted on FAST[70], an execution-driven

C64 simulator with accurate instruction timing. Table 3.1 inChapter 3 shows the C64

configuration simulated by FAST [84]. Table 3.2 gives the detailed timing of each in-

struction simulated by FAST [84]. Besides, Figure 1.1(b) shows the detailed latency

numbers of the load/store operations when accessing different memory segments. The

experimental results are shown in Figure 4.18 and 4.19.

Figure 4.18 (a) and (b) compare the execution time between the code running in

TL-DAE execution model and the code running in the base model(Undecoupled, i.e. data

movement code embedded in computation code). Both code use the sametotal number

of threads. To be more specific, if we use 32 threads to executethe undecoupled code, we

use 8 percolation threads and 24 computation threads to execute TL-DAE code. The same

number of percolation threads are used in other cases in thisexperiment. Experimental

results show that, the decoupled code execution outperforms the undecoupled code exe-

cution in all cases. One of the reason that can explain this isthat, when there are a great

number of threads performing data movement (in undecoupledcode, there are chances

that most of the threads are performing data movement at the same time), their compe-

titions for off-chip memory bandwidth would super-linearly increase the latency of data

78

 0

 50

 100

 150

 200

16 32 64 128

m
i
l
l
i
o
n

c
y
c
l
e
s

Number of Total Threads

Undecoupled
TL-DAE

(a) sparseLU (#50 50x50 blocks)

 0

 50

 100

 150

 200

16 32 64 128

m
i
l
l
i
o
n

c
y
c
l
e
s

Number of Total Threads

Undecoupled
TL-DAE

(b) strassen (2048x2048 Matrix)

Figure 4.18: Execution Time Comparison: w/ TL-DAE (8 percolation threads) vs. w/o
TL-DAE

79

 0

 5

 10

 15

 20

 25

 30

 1 2 4 8 16 32 64 128

S
p
e
e
d
u
p

Number of Computation Threads

1 perc
2 perc
4 perc
8 perc

16 perc

(a) sparseLU (#50 50x50 blocks)

 0

 5

 10

 15

 20

 25

 30

 1 2 4 8 16 32 64 128

S
p
e
e
d
u
p

Number of Computation Threads

1 perc
2 perc
4 perc
8 perc

16 perc

(b) strassen (2048x2048 Matrix)

Figure 4.19: Speedup of under different number of percolation threads

80

transfer. This greatly slows down the threads’ computationrate. Another observation is

from Figure 4.18 is that, the scalability of both benchmarksare not very good, no matter

they are executed in TL-DAE model or undecoupled model. Figure 4.19 clearly shows

this.

Figure 4.19 shows the speedup of sparseLU and strassen underdifferent num-

ber of percolation threads. Since both benchmarks are data intensive applications, their

performances (throughput and scalability) are highly determined by how many data can

be transferred from off-chip memory into on-chip memory perunit of time. As shown

in both Figure 4.19(a) and (b), when the number of computation threads is below32,

most of the executions get good speedup. This is due to (a) theseparation of the off-

chip and on-chip memory accesses; (b) the less intensive competition for the shared task

queues; and (c) the less intensive competition for the limited on-chip memory capacity.

The speedups do not scale after the number of computation threads exceeds32. The rea-

son is the increased contention for the shared on-chip resources, especially the contention

for the on-chip memory storage9. The speedup curves for8 percolation threads and16

percolation threads almost overlap with each other. This isdue to the limited off-chip

memory bandwidth, which is saturated at8 percolation threads. Adding more percolation

threads after the saturation point would not make the program run faster. Instead, it might

cause performance penalty.

4.5 Summary

In this chapter, we have introduced a new method we developedto hide memory

access latency for OpenMP programs running on the IBM Cyclops-64 processor. This

new method is named TL-DAE, stands for Thread Level Decoupled Access/Execution.

We used an example to explain why decoupled execution is necessary and possible on

the C64 processor. We also introduced the techniques used to implement the TL-DAE

9 On C64, the available global on-chip memory is configured to 2.5M.

81

execution model, i.e. the TL-DAE programming interfaces and the TL-DAE runtime

library. From the experience of developing this execution model and the experimental

results, we have the following conclusions:

1. The TL-DAE programming interface is an indispensable part of the TL-DAE exe-

cution model that helps OpenMP compiler to generate decoupled program.

2. The thread level decoupled access/execution is an effective execution model to hide

memory copy latency on a many-core processor like C64 that hasa heterogeneous

memory hierarchy.

3. For data intensive applications, off-chip memory bandwidth limit is a more heavy-

weight factor in determining the programs’ throughput and scalability.

4.6 Related Works

The TL-DAE execution model was inspired by the original hardware based DAE

model, which wasDecoupled access/executionThe original DAE model was first pro-

posed as the core hardware technique in decoupled architecture [28, 29, 98]. In decoupled

architecture, memory access (operands fetch and results store) and computation execution

are architecturally decoupled. Anaccess processor(AP) works on the memory access

instruction stream and anexecute processor(EP) works on the computation instruction

stream. The two processors communicate data values via architecturally visible queue.

The running of AP and EP canslip with respect to each other, thus AP can run further

ahead than EP and fetch operands for EP. This provides great opportunity for memory la-

tency hiding. Due to this advantage and its hardware simplicity, researchers claimed that

the decoupled architecture is more complexity-effective and scalable than the compara-

ble superscalar processors [99]. Later, the initial decoupled architecture were improved

by combining with different kinds of multithreading technologies. Dorozhevets’ Multi-

Threaded Decoupled (MTD) architecture [100, 101] proposesto use speculative multi-

threading [102] to enable the part of the parallelism that would otherwise be suppressed

82

by control dependencies; Parcerisa’s multithreaded DAE [103, 104] adopts simultaneous

multithreading [14] in decoupled architecture to effectively hide function unit latencies;

TheD3-machine [105, 106], on the contrary, introduce the conceptof decoupled execu-

tion into the multithreaded data-flow machine, in which, each actor is decoupled into two

parts: the synchronization portion and the computation portion. All of the above works

are hardware based DAE and decoupling happens at fine-grain level, i.e. the instruction

level. These are quite different from our work which is a software based DAE execution

model and decoupling happens at very coarse-grain level.

A set of similar works is software controlled pre-executionor speculative pre-

computation [107, 108, 109]. These works were extended fromthe software prefetching

technique [110, 111] and were targeted to multithreaded processors. Instead of inserting

prefetching instructions in the main thread, compiler (or programmer) constructs a piece

of prefetching code (which is termed asp-sliceor speculative slice) and lets a separate

thread execute the prefetching code. The thread running theprefetching code is called

helperthread orprecomputationthread, which is similar to thepercolationthread [112]

in our work. However, the differences are obvious. The code executed by precomputa-

tion thread is carefully extracted from the body of main thread and its main purpose is to

calculate (speculatively) the address of the loads that cause the most cache misses. Our

percolation thread executes runtime library code and its purpose is to move (with cer-

tainty) a specific chunk of data from off-chip memory to on-chip memory. Besides, pre-

computation thread usually operates on very small number ofdata values, like 8 bytes or

16 bytes, while percolation thread usually operate on a big chunk of data with pre-defined

structure. Usually, there is no communication between precomputation thread and main

thread. However, in our work, percolation thread and computation thread communicate

with each other through a software queue.

In DSWP [113, 114], a sequential program is splitted into multiple non-speculative

threads. One of the thread is dedicated to executing instructions on critical path, which

83

are the code that traverse the recursive data structure andproducethe pointers to each

node on the recursive data structure. Other threads executeinstructions on the off critical

path, whichconsumethe pointers and perform computations on each node independently.

The two kinds of threads communicate via a hardware basedsynchronization array. Here,

the thread that execute the code on critical path is also similar to our percolation threads.

However, its purpose to discover more ILP in a sequential program.

CellSs [115, 116] proposes an OpenMP-like programming modelfor the Cell BE

architecture, which is similar to the tile aware parallelization proposed for OpenMP in

[92]. CellSs also has helper thread at runtime. Its helper thread runs on the PPE side,

in parallel with master thread. It is responsible for scheduling active tasks to SPEs and

managing the task-dependency graph. It is not responsible for data movement. Data

movement is performed by SPE thread via the DMA primitives supported by Cell proces-

sor, which is not available in the Cyclops-64 processor [13].

84

Chapter 5

TILE REDUCTION

In the previous chapters, we have discussed two techniques.One is calledtile

percolation, the other is thethread-level decoupled access/executionmodel. These two

tile aware parallelizationtechnologies are developed to help compiler to generate data

movement code automatically and execute data movement codeand computation code

concurrently. In this chapter, we will introduce the third tile aware parallelization tech-

nique. This technique is not dealing with data movement. However, its purpose is to

enable an efficient parallelization which is not possible inthe traditional OpenMP pro-

gram. The name of the new parallelization technique is called tile reduction.

Tile reductionis an OpenMP tile aware parallelization technique that allows reduc-

tion to be performed on multi-dimensional arrays. This is a natural extension of thescalar

reductionin the current OpenMP specification. This chapter has three contributions:(a)

it is the first practice in OpenMP to support parallel reduction on data tiles;(b) it presents

the methods used to implement tile reduction, which includethe OpenMP API extension

and the associated code generation techniques;(c) it demonstrates the effectiveness of tile

reduction with a set of benchmarks. The experimental results show that, in some case,

tile reduction can make parallelization more natural and flexible. It not only can expose

more parallelism in an OpenMP program, but also can improve its data locality.

5.1 Introduction

Tiling [117, 95, 118, 76] has been used as an effective compiler optimizing tech-

nique to generate high performance scientific codes. Tilingnot only can improve data

85

locality for both the sequential and parallel programs [119, 120] , but also can help the

compiler to maximize parallelism and minimize synchronization [121, 22] for programs

running on parallel machines. Thus, sometimes, it is used bythe programmers to hand-

tune their scientific programs to get better performance. Tiling is essentially a program

design paradigm. It is a natural representation for many important data objects that are

heavily used in scientific and engineering algorithms. Scientific code that is written with

the concept of tile/tiling in mind usually looks concise andclear, and thus is much easier

to understand and less error prone.

Due to these advantages, it is desirable to provide certain high level language

constructs in the programming languages to support tile/tiling in program design directly.

To meet this requirement, researchers have proposed various designs in many parallel

programming languages or sub-languages. The examples include HPF[122], UPC[66],

X10[123], ZPL[124], CAF[125], Titanium[126], and HTA[127], which are among the

most popular parallel languages. They support the concept of tile aware programming

either through the first class language constructs or through library routines with uniform

interfaces.

In this chapter, we proposetile reductionfor the OpenMP programming language.

It is an OpenMP tile aware parallelization technique that allows parallel reduction to be

performed on multi-dimensional arrays. Its purpose is to enhance the OpenMP API with

the concept of tile/tiling so that more data parallelism canbe exposed to the OpenMP

compiler. It not only grants greater flexibility to the OpenMP compiler to perform more

data parallelization, but also brings better data localityinto the code.

Basically, reduction is a form of recursive calculation thatuse mathematically

associative and commutative operators to ”aggregate” a setof data. Reduction can be

performed in parallel to improve performance. For this reason, many programming lan-

guages and sub-languages support parallel reduction. Someexamples are UPC [128],

86

MPI [129], ZPL [130], and OpenMP [5]. According to the current OpenMP API spec-

ification, reduction can only be performed on ”named scalar”variables. It cannot be

applied on multi-dimensional arrays. We call this kind of reduction scalar reduction.

In this chapter, we evolve the current reduction parallelization from scalar variables to

multi-dimensional arrays, which is termedtile reduction. We have extended the tradi-

tional reduction clause to allow the programmers to annotate their code wheretile

reduction can be applied. We have also developed the required code generation technique

to interpret the newreduction clause and generate the required parallel code accord-

ingly. The rest of the chapter is organized as follows. In Section 5.2, we use a motivating

example to show why tile reduction is necessary. Section 5.3will discuss how to imple-

ment tile reduction in the OpenMP compiler. We present our experimental data in Section

5.4 and make our conclusions in Section 5.5. The related works are given in Section 5.6.

5.2 Motivation

In this section, we use the ”histogram reduction” [131] codeas an example to

demonstrate the limits of the current OpenMP reduction clause. We will also use the

same example to show the advantages of extendingscalar reductionto tile reduction.

Figure 5.1(a) shows the code of the histogram reduction program. The code

works onA[][][], a 3-dimensional array with each element containing an 8-bytelong

long. It aggregates all elements along thek dimension and stores the results in the2x2

tile A[0][][]. The diagram in Figure 5.1(b) shows these operations. We assume that

the cache line size is 32 bytes and that the the array is storedin a row-major order in

the memory. Therefore, elements with the samek coordinate can be fed into the same

cache line, as shown in Figure 5.1(c). There are three nestedloops in the code. Each loop

traverses one of thei, j, k dimension of the array. Data dependence only exit in loopk

because of the recursive calculation.

Given the code in Figure 5.1(a), there are many different ways to parallelize it.

However, due to the data dependence in loopk, we cannot parallelize this loop. Therefore,

87

1 long long A[][2][2];
2 ...
7 for (k=1; k<10000000; k++)
8 for (i=0; i<2; i++)
9 for (j=0; j<2; j++)
10 A[0][i][j] += A[k][i][j]

(a) Original Histogram Reduction Code

k

j

i

re
du

ce

32 Bytes

1

2

3

4

5

k = 0

[00] [01] [10] [11][i,j]

(b) The 3D Diagram (c) A’s Memory Layout

Figure 5.1: The Histogram Reduction Example

without changing the code, we can only parallelize loopi andj, as shown in Figure 5.2(a)

and 5.2(b). It is obvious that there are trivial workload andlittle parallelism in loopi and

loop j. Thus, it is not worthwhile to parallelize these two loops, even while using the

collapse clause (supported in OpenMP 3.0 [5]).

To get a larger workload and more parallelism, we can interchange the loops man-

ually before parallelizing the code, as shown in Figure 5.3.In Figure 5.3(a) and 5.3(b),

the workload that can be assigned to the threads is large enough. However, the available

parallelism is still very small (only supports two or four concurrent threads).

Figure 5.4(a) shows a better solution. In Figure 5.4(a), a nestedparallel for

directive is used to parallelize the recursive addition using thereduction clause (with

trivial code change). Although the code in Figure 5.4(a) canleverage all levels of paral-

lelism in the program, its stride data access pattern would cause a great number of unnec-

essary cache misses, as shown in Figure 5.4(b). Code in Figure5.3(a) and 5.3(b) have the

88

0 for (k=1; k<10000000; k++)
1 #pragma omp parallel for
2 for (i=0; i<2; i++)
3 for (j=0; j<2; j++)
4 A[0][i][j] += A[k][i][j]

(a) Parallelize loop ”i”

0 for (k=1; k<10000000; k++)
1 #pragma omp parallel for collapse(2)
2 for (i=0; i<2; i++)
3 for (j=0; j<2; j++)
4 A[0][i][j] += A[k][i][j]

(b) Parallelize loop ”i” and ”j” using the collapse clause

Figure 5.2: Parallelize the Histogram Reduction Program Without Changing the Code

same data locality problem. Apparently, the current OpenMPparallelization techniques

cannot harvest the maximum parallelism and data locality inthe code at the same time.

They suffer from either insufficient parallelism or poor data locality.

The ideal parallelization is shown in Figure 5.5. Logically, the recursive addition

can be viewed as being performed on an array of2x2 data tiles. In theory, these tiles can

be added together in parallel by multiple threads, as shown in Figure 5.5(a). In this way,

the code can achieve both the maximum parallelism and the best data locality (see Figure

5.5(b)). Besides, from the programmers’ angle, this is the most natural way to perform

parallelization on this piece of code. However, the currentOpenMP specification does

not provide any mechanism to support such kind of parallelization. This motivates us to

extend the traditionalscalarreduction totile reduction.

5.3 Tile Reduction

In this section, we will discuss the techniques used to implement tile reduction.

They include the extended OpenMP programming interface andthe required code gener-

ation design. The related runtime support will be mentionedwhen needed.

89

0 #pragma omp parallel for
1 for (j=0; j<2; j++)
2 for (i=0; i<2; i++)
3 for (k=1; k<10000000; k++)
4 A[0][j][i] += A[k][j][i]

(a) Parallelize the outer most loop: ”j”

0 #pragma omp parallel for collapse(2)
1 for (j=0; j<2; j++)
2 for (i=0; i<2; i++)
3 for (k=1; k<10000000; k++)
4 A[0][j][i] += A[k][j][i]

(b) Parallelize the outer most two loops: ”j” and ”i”

Figure 5.3: Parallelize the Histogram Reduction Program After Performing Loop Inter-
change

5.3.1 Programming Interface Extension

In order to support tile reduction, we need to extend the current OpenMP pro-

gramming interface. The extension was made based on three criteria. First, it must be

able to cover most of the common cases of tile reduction code.Second, it must be simple

and easy to use and provide the programmers with the maximal flexibility. Third, the

extension should not complicate the code generation of the OpenMP compiler and the

OpenMP runtime. Figure 5.6(a) shows the OpenMP API (C/C++) extension we proposed

for thereduction clause. Figure 5.6(b) gives a simple example that uses the extended

reduction clause to parallelize the tile reduction code.

Compared with the current OpenMP API specification, the difference is in the

list construct. In addition to the ”named scalar” variables, we allow the programmers

to put a ”multi-dimensional array” in thelist construct. This ”multi-dimensional array”

is not a real array data structure in the language sense. It isa language construct that

conveys important information to the OpenMP compiler. It tells the compiler the shape,

the size, and the element type of the tile and how its elementsare traversed by the loops.

90

0 #pragma omp parallel for private(sum) collapse(2)
1 for (j=0; j<2; j++)
2 for (i=0; i<2; i++) {
3 sum = 0;
4 #pragma omp parallel for shared(sum) reduction(+:sum)
5 for (k=0; k<10000000; k++)
6 sum += A[k][j][i]
7 A[0][j][i] = sum;
8 }

(a) Nested parallelization to harvest more parallelism

1

2

3

4

5

k = 0

[00] [01] [10] [11][i,j]

(b) Data access pattern

Figure 5.4: More Parallelization for Histogram Reduction Code

To make the thesis easy to follow, we call the tile under reduction as thereduction

tile; the ”multi-dimensional array” in thelist construct as thetile descriptor; and the

loops involved in performing ”one” recursive calculation as thereduction kernel loops.

For the example in Figure 5.6(b)1, the reduction tile isB[][], the tile descriptor is

B[j,0,2][i,0,2], and the reduction kernel loops are thej andi loops (not including

the k loop, i.e., the parallelized loop). In our design, the shapeof the reduction tile

must be a rectangle or a high-dimensional rectangle. Triangle or other shapes are not

yet supported. The exact shape and size of the reduction tileare determined by the tile

descriptor.

The format of the tile descriptor is shown in Figure 5.6(a). It has two parts: the

1 Index variable k starts from zero because array B[][] is used to store the accumulation
results, otherwise it starts from one.

91

....

+ + + +

(a) Schema of tile reduction

1

2

3

4

5

k = 0

[00] [01] [10] [11][i,j]

(b) Better locality

Figure 5.5: The Ideal Parallelization Schema for the Histogram Reduction Code

tile name(i.e.,T) and thedimension descriptor(i.e., [jk, Lk, Uk]...[j2, L2, U2][j1, L1, U1]).

Tile name must be the same as the multi-dimensional array variable on which the recursive

calculations are performed. For the example in Figure 5.6(b), this corresponds to the

name of thelhs variable in line 4, which isB. It tells the OpenMP compiler the data type

of the tile element, which must be a built-in scalar type. Thedimension descriptor, on

the other hand, is an array of 3-tuples. Each 3-tuple corresponds to one dimension of the

tile and stores important information of that dimension. These 3-tuples are listed in the

dimension descriptor in descendant order (higher dimension first). Each 3-tuple has three

elements: loop index variable, upper bound expression, andlower bound expression. The

loop index variable identifies a loop in the reduction kernelloops. Since stride accesses

are not allowed, the loop stride is always1, so it is omitted from the tuple. The size of the

k-dimensional tile is calculated from equation (5.1).

(Uk − Lk) × ...(U2 − L2) × (U1 − L1) (5.1)

92

reduction(operator : T[jk, Lk, Uk]...[j2, L2, U2][j1, L1, U1])

T: Tile name
k: Dimension of the tile
ji: the loop index that is used in the traversal of theith dimension of the tile
Li: the lower bound ofji

Ui: the strict upper bound ofji

(a) OpenMP API (C/C++) extension for thereduction clause

int B[2][2] = {{0,0},{0,0}};
...

0 #pragma omp parallel for reduction(+: B[j,0,2][i,0,2])
1 for (k=0; k<10000000; k++)
2 for (j=0; j<2; j++)
3 for (i=0; i<2; i++)
4 B[j][i] += A[k][j][i]

(b) Simple example using the extended API

Figure 5.6: OpenMP API (C/C++) extension and a simple example code

The information stored in the tile descriptor is very important for the OpenMP compiler

to generate correct parallel code.

Theoperator, as usual, must be a mathematically associative and commutative

operator that performs the recursive calculation. In our current example, it is a ”+”.

0 #pragma omp parallel for reduction(+: A[j,0,2][i,0,2])
1 for (k=1; k<10000000; k++)
2 for (j=0; j<2; j++)
3 for (i=0; i<2; i++)
4 A[0][j][i] += A[k][j][i]
5

Figure 5.7: Tile reduction: tile is part of a bigger multi-dimensional array

The reduction tile is not required to be a standalone multi-dimensional array. In-

stead, it can be part of another larger multi-dimensional array. For example, in the code

93

in Figure 5.7, the reduction tile isA[0][j][i] (j = {0, 1}, i = {0, 1}). It is a 2 × 2

slice cut out from the 3-dimensional arrayA[][][];

Besides, as we have mentioned before, the lower and upper bounds in the dimen-

sion descriptor are expressions. They are not required to beconstants. Generally, the

lower and upper bounds can be a function of other variables, as long as the result of the

function can be decided at runtime. Figure 5.8 shows such an example. The code in

Figure 5.8 is a blocked matrix multiplication program. It iseasy to see that there is an

opportunity to apply tile reduction on the loop in line 3, i.e., thekk loop. The diagram on

the right hand side gives an intuitive illustration. In thisexample, the reduction tiles are

blocks cut out from a big2 × 2 matrix (C[][]). Therefore, the lower and upper bounds

of the reduction tiles are not fixed values. In addition, the matrix C[][] might not be

able to be evenly blocked. So, the tiles located at the marginof the matrix are usually

smaller than the tiles located inside of the matrix. Thus, the sizes of the reduction tiles are

not necessarily the same. All these information is reflectedin the lower and upper bound

expressions (or functions) in the dimension descriptor. Moreover, there is a restriction for

the lower bound and upper bound expressions. They should notbe functions of any index

variable in the reduction kernel loops, i.e., they are orthogonal. This is to make sure that

the shape of the reduction tile is a rectangle, or high-dimensional rectangle.

An interesting observation of this example code is that the number of the reduction

kernel loops (which is3, from line 6 to line 8) is not the same as the dimension of the

reduction tile (which is2). Generally, we do not require the number of the reduction

kernel loops to be the same as the dimension of the reduction tile. We only require that

the operations performed by the code in the reduction kernelloops can be viewed as one

associative and commutativemacrooperation performed on the entire reduction tile.

5.3.2 Code Generation

Since tile reduction is derived from scalar reduction, its code generation shares

the same framework as scalar reduction. Thus, we illustratethe code generation for tile

94

0
1 for (ii=0; ii<n; ii+=b)
2 for (jj=0; jj<n; jj+=b)
3 #pragma parallel for reduction(+: \
4 C[i,ii,min(ii+b,n)][j,jj,min(jj+b,n)])
5 for (kk=0; kk<n; kk+=b)
6 for (i=ii; i<min(ii+b,n); i++)
7 for (j=jj; j<min(jj+b,n); j++)
8 for (k=kk; k<min(kk+b,n); k++)
9 C[i][j]+=A[i][k]*B[k][j];
10

0

1

2

3

4

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

0

1

2

3

4

0

1

2

3

4

C A B

= X

Figure 5.8: Tile reduction: upper and lower bounds are functions

reduction under the same framework as scalar reduction and use the code generation for

scalar reduction as a reference. Generally, the code generation needs to deal with the

following problems:

1. Distribute the iterations of the parallelized loop amongthe threads;

2. Allocate memory for the private copy of the tile used in thelocal recursive calcula-

tion;

3. Perform the local recursive calculation which is specified by the reduction kernel

loops;

4. Update the global copy of the reduction tile;

Figure 5.9 shows the code generated for the tile reduction example in Figure 5.8. To make

the thesis easy to follow, we present the pseudo C code in the figure.

95

As we have mentioned at the beginning of Section 5.3.1, we tryto avoid compli-

cating the code generation when we were developing the extension for thereduction

clause. A good example is the code generation for distributing the iterations of the paral-

lelized loop among the dynamic threads. Actually, this partof the code generation for tile

reduction is the same as that for scalar reduction.

In the tile reduction program, the reduction kernel loops can be viewed as a single

statement that performs the recursive calculation, which is the same as its counterpart in

the scalar reduction program. So, from the angle of iteration distribution, the scalar reduc-

tion code and the tile reduction code are logically the same.Therefore, the method used

to generate iteration distribution code for scalar reduction can also be used to generate

iteration distribution code for tile reduction. It doesn’tmatter whichschedule policy

(static, dynamic, guided, orruntime) is deployed.

In Figure 5.9, we usestatic scheduling policy as an example. In the code from

line 2 to line 7, the iterations of thekk loop (line5 in Figure 5.8) are evenly distributed

among the threads. The iterations of the loop are divided into chunks and each chunk is

assigned to one dynamic thread. The iteration chunk assigned to the thread is delimited

by the lower bound variable"lb" and the upper bound variable"ub", which are de-

termined by thethread numberof the owner thread. This piece of code only deals with

the parallelized loop and the user specified OpenMP parameters. It does not even need

to look into the code of the reduction kernel loops. This is the same for other schedule

policies.

At line 10, the OpenMP runtime routine allocates memory for the the private tile

(private tile), which is a 2-dimensional array. This private tile is used by the thread

as a temporary storage to perform the local sequential tile reduction. Its size is calculated

from the parameters specified in the dimension descriptor (see equation 5.1). Its element

data type is inferred from the tile name. All this information is obtained from the extended

reduction clause.

96

0
1 /* statically partition the iteration space among

* the threads */
2 num_thr = __builtin_omp_get_num_threads ();
3 thr_id = __builtin_omp_get_thread_num ();
4 chunk_size = (((n+(b-1))/(b-1))%num_thr) == 0 ? \
5 (((n+(b-1))/(b-1))/num_thr):(((n+(b-1))/(b-1))/num_thr)+1;
6 lb = chunk_size * thr_id; /* lower bound */
7 ub = min((lb+chunk_size),n); /* upper bound */
8
9 /* allocate memory for private tile */
10 private_tile = (int *)__builtin_omp_memory_alloc(\
11 (min(ii+b,n)-ii)*(min(jj+b,n)-jj)*sizeof(int));
12
13 /* local tile reduction: serial */
14 for (kk=lb; kk<ub; kk+=b)
15 for (i=ii; i<min(ii+b,n), i++)
16 for (j=jj; j<min(jj+b,n), j++)
17 for (k=kk; k<min(kk+b,n), kk++)
18 private_tile[i-ii][j-jj] += A[i][k]*B[k][j]
19
20 /* update the global reduction tile */
21 __builtin_omp_atomic_start ();
22 for (i=ii; i<min(ii+b,n), i++)
23 for (j=jj; j<min(jj+b,n), j++)
24 C[i][j] += private_tile[i-ii][j-jj];
25 __builtin_omp_atomic_end ();
26
27 free(private_tile);
28

Figure 5.9: Pseudo code generated for the matrix multiplication example to perform tile
reduction

97

The local sequential tile reduction is performed by the codefrom line 14 to line

18. This piece of code is almost the same copy as the original sequential program (line

5 to line9 in Figure 5.8) except two places. At line 14, the lower and upper bounds of

the loop are changed to"lb" and"ub". This is to restrict the range of the iteration

space in the chunk assigned to the current thread. Besides, atline 18, we replace the

original reduction tile with the private tile and update itsindices. This index calibration

is required because the global reduction tile is cut out froma bigger multi-dimensional

array, while the private tile is a standalone array. This piece of code performs local tile

reduction sequentially, as in the original un-parallelized code.

After finishing the local tile reduction, the thread must update the global reduction

tile. The code is shown from line 21 to line 25. The runtime routines called at line 21

& line 25 ensure atomic access to the global reduction tile. The loops at line 22 and

line 23 are extracted from thereduction kernel loops. Only the loops listed in thetile

descriptorare selected. So, the loopk in the reduction kernel loops is not included. The

lhs variable of the statement at line 24 is the same variable as inthe original code (line 9

in Figure 5.8). However, therhsvariable has been replaced with the private tile, in which

the indices have been updated.

From the code in Figure 5.9, it is easy to see that the code generation for the

tile reduction is as easy as that for the traditional scalar reduction. Meanwhile, no extra

runtime supports is required. These advantages make the implementation of tile reduction

in the OpenMP compiler very easy. In the next section, we willpresent the experimental

results of applying the tile reduction on several typical benchmarks.

5.4 Experiments

We have applied tile reduction on three benchmarks: the 2D histogram reduction,

matrix-matrix multiplication and matrix-vector multiplication. The required code gener-

ation was implemented through source-to-source transformation and was prototyped in

the Omni-1.6 OpenMP compiler [83]. The machine used in the experiments has 4 Intel

98

Dual-Core Xeon (Paxville) chips, which are clocked at 3.0 GHz. Each core has Hyper-

Threading (HT) enabled. Therefore, the machine can be viewed as a 16-processor shared

memory parallel computer. Each chip has 4MB L2 cache (2MB each core) and each core

has 16KB L1 cache. The machine runs Linux Ubuntu 7.04.

Figure 5.10, Figure 5.11, and Figure 5.12 show the experimental data of the each

three benchmarks. The curve graphs in these figures display the speedup of the bench-

mark programs parallelized either through the tile reduction clause (w/ tile reduction) or

through the standard OpenMP directives/clauses (w/o tile reduction). The bar charts, on

the other hand, demonstrate the difference of the absolute execution time between the

corresponding programs (w/ and w/o tile reduction) of the same set of benchmarks.

Figure 5.10(b) shows great performance enhancement if we parallelize the 2D his-

togram reduction benchmark with the tile reduction clause.Generally, compared with the

program parallelized with standard OpenMP pragma, the absolute execution time of the

tile reduction version decreased about90% and its speedup on 8 threads increased from

1.5 to 4.5. The performance gain comes from the improved data locality, which owes to

the tile reduction optimization. Without using tile reduction, the 2D histogram reduction

program exhibit very poor scalability (shown in Figure 5.3). The tile reduction paral-

lelization successfully rectifies the data access pattern and thus significantly improves its

scalability. However, no matter what kind of optimizationsare used, this benchmark stops

scaling beyond 8 threads. This is because of the huge number of memory references in

the code, which results in that its performance is finally restricted by the bandwidth of the

shared memory bus.

The same phenomena are also observed in the matrix-matrix multiplication bench-

mark (see Figure 5.11(a) and 5.12(b)). Tile reduction can also decrease its execution time

and improve its scalability. However, the magnitude of the performance enhancement

caused by tile reduction is not as big as that of the 2D histogram reduction benchmark.

99

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 2 4 8

S
pe

ed
up

Number of Threads

w/o Tile Reduction
w/ Tile Reduction

(a) speedup

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

1 2 4 8 16

m
ill

is
ec

on
d

Number of Threads

w/o Tile Reduction
w/ Tile Reduction

(b) execution time

Figure 5.10: 2D histogram reduction: Comparison of the speedup and execution time
between the code parallelized with tile reduction and the code parallelized
with the standard OpenMP pragma.

100

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 2 4 8

S
pe

ed
up

Number of Threads

w/o Tile Reduction
w/ Tile Reduction

(a) speedup

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

1 2 4 8 16

m
ill

is
ec

on
d

Number of Threads

w/o Tile Reduction
w/ Tile Reduction

(b) execution time

Figure 5.11: Matrix-matrix multiplication: Comparison of the speedup and execution
time between the code parallelized with tile reduction and the code paral-
lelized with the standard OpenMP pragma.

101

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 2 4 8

S
pe

ed
up

Number of Threads

w/o Tile Reduction
w/ Tile Reduction

(a) speedup

 0

 50000

 100000

 150000

 200000

 250000

 300000

1 2 4 8 16

m
ill

is
ec

on
d

Number of Threads

w/o Tile Reduction
w/ Tile Reduction

(b) execution time

Figure 5.12: Matrix-vector multiplication: Comparison of the speedup and execution
time between the code parallelized with tile reduction and the code paral-
lelized with the standard OpenMP pragma.

102

This is also the same for the scalability enhancement. The reason is that the data lo-

cality of the tiled matrix-matrix multiplication program is better than the 2D histogram

reduction benchmark. Therefore, the performance gain fromtile reduction in the ma-

trix multiplication program is less than that in the 2D histogram reduction program. On

average, the execution time decreased34% after applying tile reduction and its speedup

increased from2.15 to 3.18 on 8 threads and from2.26 to 3.32 on 16 threads.

For the matrix-vector multiplication case, the performance enhancement brought

about by tile reduction is smaller than that of the previous two benchmarks. The reason is

the same as the previous one. Moreover, compared with the other two benchmarks, there

are less data memory references in this benchmark. So, the program’s performance de-

grades a little bit when it runs with 8 or 16 threads. This is because of the synchronization

overhead caused by the code in line21 and25 in Figure 5.9. In average, its execution

time decreased0.28%.

5.5 Summary

In this chapter, we introduced the concept of tile aware parallelization for

OpenMP. Meanwhile, we developed the first tile aware parallelization technique - tile

reduction, and illustrated the details of code generation for the tile reduction clause. We

also designed a series of experiments to evaluate the tile reduction technique. From the

experimental results and our experience of parallelizing the benchmarks, we have the

following conclusions:

1. As a building block of the tile aware parallelization theory, tile reduction brings

more opportunities to parallelize dense matrix applications.

2. For some benchmarks, tile aware parallelization is a morenatural and intuitive way

to reason about the best parallelization decision.

3. Tile reduction not only can improve data locality for someprograms, but also can

expose more parallelism.

103

5.6 Related Works of Parallel Reduction

Parallel reduction operations are supported in many parallel programming lan-

guages. They include C**[132], SAC [133], ZPL [131], UPC [128], and MPI [129]. Most

of them support user-defined reduction operations, either through language constructs or

through library routines. User-defined reduction operation provides a flexible way to im-

plement tile reduction. However, programmers need to change both data structures and

algorithms, which, sometimes, is not a trivial job.

Another piece of work that we need to mention is [134]. In [134], the authors pro-

pose to extend the OpenMPreduction clause to parallelize C++ generic algorithms.

They propose to support user-defined types, overloaded operators, and function objects

in the same way as the built-ins supported in the current OpenMP reduction clause.

Their work is very close to that presented in this chapter. However, we study the reduc-

tion problem from a different angle. We propose tile reduction as one of the tile aware

parallelizing technique for OpenMP, while [134] proposes user-defined reduction opera-

tion to complete their OpenMP extensions for parallelizinggeneric libraries. In our tile

aware parallelization technique, we are concerned with thedata partition, locality and a

more flexible and efficient way to parallelize dense matrix programs written in canonical

C syntax, while the purpose of [134] is to allow people to parallelize programs written in

modern C++ idioms such asiteratorsandfunction objects, which are not canonical C syn-

tax. Second, due to the non-trivial dynamic overhead of the generic techniques, generic

libraries are not widely used in programming high performance scientific and engineering

algorithms. Finally, there are no experimental data in [134].

104

Chapter 6

CONCLUSIONS AND FUTURE DIRECTIONS

In this thesis, we have proposed a set ofTile Aware Parallelization(TAP for short)

techniques for OpenMP programs running on many-core processors with software man-

aged memory hierarchies, like the IBM Cyclops-64 processor. The purpose of TAP is to

grant OpenMP programmers the ability to interact with OpenMP compiler to orchestrate

data movement in a parallel program running in the segmentedmemory space, thus the

program can take full advantage of the fast on-chip memory. Although, for Cyclops-64,

there are three different kinds of memory segments in the same address space, TAP only

focus on the interface between on-chip and off-chip memory.The reason is that, among

all the memory segment separators, the interface between on-chip and off-chip memory

is the most critical one due to the memory bandwidth issue that exists at this interface. In

the following two sections, we will draw our conclusion and point out the possible future

work directions.

6.1 Summary and Conclusions

In Chapter 3, we have designed and developedTile Percolation, a TAP technique

used to generate data movement code for OpenMP programs running on the Cyclops-64

many-core processor. To make sure the generated data movement code can be executed

in parallel with the computation code, we developed anotherTAP technique (in Chapter

4) calledThread-Level Decoupled Access/Execution, i.e. the TL-DAE execution model

105

for executing OpenMP programs on Cyclops-64. In Chapter 5, we developed a TAP tech-

nique calledTile Reductionto perform parallel reduction operation on multi-dimensional

arrays.

From our experience in developing these TAP techniques, we got the following

conclusions:

1. As more and more many-core processors adopt software managed memory hierar-

chy design, many new problems would come out if we use the existing OpenMP

APIs to parallelize a sequential program for these many-core processors. Our devel-

opment of tile aware Parallelization techniques show that,it is not only necessary

but also possible to solve some of these new problems by introducing new data tile

directives/clauses into the current OpenMP programming model.

2. The tile percolation technique can protect the programmers from involving in the

hassles of dealing with the heterogeneity of the memory address space. The TL-

DAE execution model makes sure that the data movement code generated by tile

percolation can be executed in parallel with computation code. Both techniques can

make programming on Cyclops-64 easier and make program execution on Cyclops-

64 more efficient.

3. The tile reduction technique grant OpenMP the power to perform parallel reduction

on multi-dimensional arrays. Experimental results show that, this technique can

both improve parallelism and optimize data locality.

6.2 Future Works

The followings are the possible future directions for the design and implementa-

tion of the Tile Aware Parallelization techniques.

1. At the current stage, the design of the tile aware parallelization techniques is re-

stricted by itsad hoc implementation through a source-to-source transformation

106

approach. This affects the design of the tile aware parallelization API. For exam-

ple, in the API for the TL-DAE programming model, there is a field calledTY in the

definition of tile descriptorTILE DESC. It tells the compiler the type of the data

tile element. Actually, in a decent compiler implementation, the compiler can infer

the type of the data tile element from the intermediate representation of the guarded

function call. Therefore, it is not necessary to ask the programmer to respecify it in

the API. So, the API does not need to have this field, which would make the API

simpler and more clean. There are other similar issues in thecurrent design which

can be optimized in a decent compiler implementation. Therefore, a final decision

on the design of the API needs a comprehensive discussion to decide which fields

need to be kept in the API.

2. The current TL-DAE programming and execution model only support three

tasklets, i.e. the 3-step operationcopyin, compute, andcopyout. However, the

design of the implementation allows it to be extended to support more complicated

computation models. For instance, the stream processing [135] model. In order

to achieve a more general and flexible framework to support versatile computation

models, efforts must be exerted to improve in the following directions:(a) First, the

programming interface must be extended to give programmersthe power to anno-

tate a task that may have more tasklet functions and may possess more complicated

relationships. In addition, the programmer also need the utilities to specify how

data are exchanged among these tasklets. The current OpenMPpragma/directives

do not support these;(b) Second, the data structuretldae task{} needs to be ex-

tended. The tasklet array.tasklet array[] should have more entries to store

more tasklet functions that might be specified by programmer. Accordingly, we

need to add more argument descriptor arrays in thetldae task{} to accompany

the multiple numbers of tasklet functions specified by programmer;(c) Currently,

the dependence between tasklets in TL-DAE execution model is enforced by their

107

orders in the.tasklet array[]. This array is an one dimension structure, so it

can only be used to enforce dependence relationship betweentwo tasklets in a total

order. If the execution of taskletA is dependent on taskletB and taskletC, we must

insertA andB in front of C in the same tasklet array. Therefore, we would serialize

the execution of taskletB and taskletC although they can be executed in parallel.

We need a scheme to express such a dependence relationship ina partial order data

structure, which means that a DAG is needed instead of an array.

3. In the current TL-DAE model, the data movement tasks and computation tasks are

created and executed in parallel. However, the current workdoes not intend to

leverage the data tile reuse that might exist among the different tasks. This actu-

ally can also be solved under the TL-DAE framework. Efforts are needed to(a)

first provide a method that programmer can annotate data tilere-usage;(b) second,

compiler needs to interpret the annotations and generate the correct code and data

structure;(c) third, create partial order dependence graph so the tasks are scheduled

to reuse the computation results produced by the leading tasks.

4. As we mentioned, it is very desirable to extend the currentOpenMP programming

model to deal with the issues brought up by the software managed memory hier-

archy design. So, a set of simple and uniform new OpenMP APIs is required to

be added into OpenMP of the next generation. Therefore, morepractical OpenMP

benchmarks need to be studied to improve the current tile aware parallelization

directives/clauses.

108

Appendix A

DIAGRAM OF THE CYCLOPS-64 SOFTWARE TESTBED

Figure A.1: Cyclops-64 Softeare Testbed (Courtesy to Ziang Hu)

109

Appendix B

IMPORTANT TL-DAE RUNTIME ROUTINES

10
11 void TLDAE_schedule_task(struct tldae_task *tsk);
12
13 void _tldae_read(struct tldae_task *tsk);
14
15 void _tldae_write(struct tldae_task *tsk);
16
17 void TLDAE_task_enqueue_read(struct tldae_task *tsk);
18
19 void TLDAE_task_enqueue_compute(struct tldae_task *tsk);
20
21 void TLDAE_task_enqueue_write(struct tldae_task *tsk);
22
23 struct tldae_task* TLDAE_get_task();
24
25 void TLDAE_put_task(struct tldae_task *tsk);
26

Figure B.1: TL-DAE Runtime Routines

110

Appendix C

ROSE COMPILER CODE GENERATION EXAMPLE

C.1 Original sparseLU code with OpenMP task pragma

156
157 ...
158
159 #pragma omp parallel single
160
161 for (kk=0; kk<NB; kk++) {
162 lu0(A[kk][kk]);
163 //#pragma omp taskgroup
164 {
165
166 for (jj=kk+1; jj<NB; jj++)
167 if (A[kk][jj] != NULL)
168 #pragma omp task firstprivate(kk, jj) shared(A)
169 fwd(A[kk][kk], A[kk][jj]);
170
171 for (ii=kk+1; ii<NB; ii++)
172 if (A[ii][kk] != NULL)
173 #pragma omp task firstprivate(kk, ii) shared(A)
174 bdiv (A[kk][kk], A[ii][kk]);
175 }
176
177 #pragma omp taskwait
178
179 ...
180

Figure C.1: Original OpenMP task code segment from sparseLUmain function

C.2 Code Generated from ROSE Compiler with OpenMP Task Support

111

47 void OUT__4__1527__(void **__out_argv)
48 {
49 int *ii = (int *)(__out_argv[3]);
50 int *jj = (int *)(__out_argv[2]);
51 int *kk = (int *)(__out_argv[1]);
52 float *(*A)[100UL][100UL] = \
53 (float *(*)[100UL][100UL])(__out_argv[0]);
54 for (*kk = 0; *kk < 100; (*kk)++) {
55 lu0((((*A)[*kk])[*kk]));
56 //#pragma omp taskgroup
57 {
58 for (*jj = (*kk + 1); *jj < 100; (*jj)++)
59 if ((((*A)[*kk])[*jj]) != ((float *)(((void *)0)))) {
60 void *__out_argv3__1527__[3];
61 __out_argv3__1527__[0] = ((void *)(&(*A)));
62 __out_argv3__1527__[1] = ((void *)(&(*kk)));
63 __out_argv3__1527__[2] = ((void *)(&(*jj)));
64 GOMP_task(OUT__3__1527__,&__out_argv3__1527__,0,12,4,1,0);
65 }
66 for (*ii = (*kk + 1); *ii < 100; (*ii)++)
67 if ((((*A)[*ii])[*kk]) != ((float *)(((void *)0)))) {
68 void *__out_argv2__1527__[3];
69 __out_argv2__1527__[0] = ((void *)(&(*A)));
70 __out_argv2__1527__[1] = ((void *)(&(*kk)));
71 __out_argv2__1527__[2] = ((void *)(&(*ii)));
72 GOMP_task(OUT__2__1527__,&__out_argv2__1527__,0,12,4,1,0);
73 }
74 }
75 GOMP_taskwait();
76
77 for (*ii = (*kk + 1); *ii < 100; (*ii)++)
78 if ((((*A)[*ii])[*kk]) != ((float *)(((void *)0))))
79 for (*jj = (*kk + 1); *jj < 100; (*jj)++)
80 if ((((*A)[*kk])[*jj]) != ((float *)(((void *)0)))) {
81 void *__out_argv1__1527__[4];
82 __out_argv1__1527__[0] = ((void *)(&(*A)));
83 __out_argv1__1527__[1] = ((void *)(&(*kk)));
84 __out_argv1__1527__[2] = ((void *)(&(*jj)));
85 __out_argv1__1527__[3] = ((void *)(&(*ii)));
86 GOMP_task(OUT__1__1527__,&__out_argv1__1527__,0,16,4,1,0);
87 }
88 GOMP_taskwait();
89 }
90 }

Figure C.2: Code Generated by ROSE Compiler with OpenMP Task Support: the master
thread code

112

02 void OUT__1__1527__(void **__out_argv)
03 {
04 int *ii = (int *)(__out_argv[3]);
05 int *jj = (int *)(__out_argv[2]);
06 int *kk = (int *)(__out_argv[1]);
07 float *(*A)[100UL][100UL] = \
08 (float *(*)[100UL][100UL])(__out_argv[0]);
09 int _p_ii;
10 _p_ii = *ii;
11 int _p_jj;
12 _p_jj = *jj;
13 int _p_kk;
14 _p_kk = *kk;
15 if ((((*A)[_p_ii])[_p_jj]) == ((float *)(((void *)0))))
16 ((*A)[_p_ii])[_p_jj] = allocate_clean_block();
17 bmod((((*A)[_p_ii])[_p_kk]),(((*A)[_p_kk])[_p_jj]), \
18 (((*A)[_p_ii])[_p_jj]));
19 }
20
21 void OUT__2__1527__(void **__out_argv)
22 {
23 int *ii = (int *)(__out_argv[2]);
24 int *kk = (int *)(__out_argv[1]);
25 float *(*A)[100UL][100UL] = \
26 (float *(*)[100UL][100UL])(__out_argv[0]);
27 int _p_ii;
28 _p_ii = *ii;
29 int _p_kk;
30 _p_kk = *kk;
31 bdiv((((*A)[_p_kk])[_p_kk]),(((*A)[_p_ii])[_p_kk]));
32 }
33
34 void OUT__3__1527__(void **__out_argv)
35 {
36 int *jj = (int *)(__out_argv[2]);
37 int *kk = (int *)(__out_argv[1]);
38 float *(*A)[100UL][100UL] = \
39 (float *(*)[100UL][100UL])(__out_argv[0]);
40 int _p_jj;
41 _p_jj = *jj;
42 int _p_kk;
43 _p_kk = *kk;
44 fwd((((*A)[_p_kk])[_p_kk]),(((*A)[_p_kk])[_p_jj]));
45 }

Figure C.3: Code Generated by ROSE Compiler with OpenMP Task Support: three
outlined wrapper functions of the task functions

113

BIBLIOGRAPHY

[1] A. Buttari, J. Langou, J. Kurzak, and J. J. Dongarra, “Parallel tiled QR factorization
for multicore architectures,” LAPACK Working Note, Tech. Rep. 190, July 2007.
[Online]. Available: http://www.netlib.org/lapack/lawnspdf/lawn190.pdf

[2] G. R. Gao, “Developing Program Execution Models for 1,000,000 cores and Be-
yond: Issues and Challenges,” 2008, slides presented at Sandia.

[3] Intel, “Intel Core 2 Duo Processor,” 2007. [Online]. Available: http:
//www.intel.com/products/processor/core2duo/index.htm

[4] AMD, “AMD Quad-Core Opteron Processors,” 2007. [Online]. Available: http:
//multicore.amd.com/us-en/AMD-Multi-Core/Products/Multi-Core-S-WS.aspx

[5] OpenMP Architecture Review Board, “OpenMP Application Program Interface
Version 3.0,” May 2008, http://www.openmp.org/mp-documents/spec30.pdf.

[6] D. E. Culler, J. P. Singh, and A. Gupta,Parallel Computer Architecture – A Hard-
ware/Software Approach. San Francisco: Morgan Kaufmann Publishers, Inc.,
1999.

[7] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands,
K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams,
and K. A. Yelick, “The landscape of parallel computing research: A
view from berkeley,” EECS Department, University of California, Berkeley,
Technical Report UCB/EECS-2006-183, December 2006. [Online].Available:
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf

[8] F. Allen, “Compiling for performance a personal tour,” San Diego, CA,
2007, turing Award Lecture given at PLDI 2007. [Online]. Available:
http://awards.acm.org/images/awards/140/vstream/2006/turingaward2006.mov

[9] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, and D. Shippy,
“Introduction to the cell multiprocessor,”IBM J. Res. Dev., vol. 49, no. 4/5, pp.
589–604, 2005.

114

[10] H. P. Hofstee, “Power efficient processor architectureand the Cell processor.”
in 11th International Conference on High-Performance ComputerArchitecture
(HPCA-11 2005), San Francisco, CA, USA, February 2005, pp. 258–262.

[11] J. del Cuvillo, W. Zhu, Z. Hu, and G. R. Gao, “Towards a software infrastructure
for cyclops-64 cellular architecture,” inHPCS 2006, Labroda, Canada, June 2005.

[12] Y. Zhang, T. Jeong, F. Chen, H. Wu, R. Nitzsche, and G. R. Gao,“A study of the
on-chip interconnection network for the ibm cyclops64 multi-core architecture,”
in IPDPS’06: Proceedings of the 20th International Parallel and Distributed Pro-
cessing Symposium, 25-29 April 2006, Rhodes Island, Greece, April 2006.

[13] Z. Hu, J. del Cuvillo, W. Zhu, and G. R. Gao, “Optimization of dense matrix mul-
tiplication on ibm cyclops-64: Challenges and experiences,” in Euro-Par 2006,
Parallel Processing, 12th International Euro-Par Conference, Dresden, Germany,
August 28 - September 1, 2006, Proceedings, 2006, pp. 134–144.

[14] D. M. Tullsen, S. J. Eggers, and H. M. Levy, “Simultaneous multithreading: Max-
imizing on-chip parallelism,” inProceedings of the 22nd Annual International
Symposium on Computer Architecture. Santa Margherita Ligure, Italy: ACM
SIGARCH and IEEE Computer Society, June 22–24, 1995, pp. 392–403, Com-
puter Architecture News,23(2), May 1995.

[15] H. Akkary and M. A. Driscoll, “A dynamic multithreadingprocessor,” inProceed-
ings of the 31st Annual International Symposium on Microarchitecture. Dallas,
Texas: IEEE-CS TC-MICRO and ACM SIGMICRO, November 30–December2,
1998, pp. 226–236.

[16] P. Marcuello, A. Gonźalez, and J. Tubella, “Speculative multithreaded processors,”
in Conference Proceedings of the 1998 International Conferenceon Supercomput-
ing. Melbourne, Australia: ACM SIGARCH, July 13–17, 1998, pp. 77–84.

[17] G. S. Sohi, S. E. Breach, and T. N. Vijaykumar, “Multiscalar processors,” inPro-
ceedings of the 22nd Annual International Symposium on Computer Architecture.
Santa Margherita Ligure, Italy: ACM SIGARCH and IEEE Computer Society,
June 22–24, 1995, pp. 414–425,Computer Architecture News,23(2), May 1995.

[18] E. Rotenberg, Q. Jacobson, Y. Sazeides, and J. Smith, “Trace processors,” inPro-
ceedings of the 30th Annual International Symposium on Microarchitecture. Re-
search Triangle Park, North Carolina: IEEE-CS TC-MICRO and ACM SIGMI-
CRO, December 1–3, 1997, pp. 138–148.

[19] D. W. Wall, “Limits of instruction-level parallelism,” in Proceedings of the Fourth
International Conference on Architectural Support for Programming Languages

115

and Operating Systems. Santa Clara, California: ACM SIGARCH, SIGPLAN,
SIGOPS, and the IEEE Computer Society, April 8–11, 1991, pp. 176–188,Com-
puter Architecture News,19(2), April 1991;Operating Systems Review, 25, April
1991;SIGPLAN Notices,26(4), April 1991.

[20] C. Ancourt and F. Irigoin, “Scanning polyhedra with DO loops,” in Proceedings
of the Third ACM SIGPLAN Symposium on Principles & Practice ofParallel Pro-
gramming, Williamsburg, Virginia, April 21–24, 1991, pp. 39–50,SIGPLAN No-
tices,26(7), July 1991.

[21] P. Feautrier, “Toward automatic partitioning of arrays on distributed memory com-
puters,” inConference Proceedings, 1993 International Conference on Supercom-
puting. Tokyo: ACM, July 20–22, 1993, pp. 175–184.

[22] A. W. Lim and M. S. Lam, “Maximizing parallelism and minimizing synchroniza-
tion with affine transforms,” inConference Record of POPL’97: The 24th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Paris,
January 15–17, 1997, pp. 201–214.

[23] J. Xue,Loop Tiling for Parallelism. Kluwer Academic Publishers, 2000.

[24] John Paul Shen and Mikko H. Lipasti,Modern Processor Design: Fundamentals
of Superscalar Processors. McGraw-Hill Book Company, 2005.

[25] John L. Hennessy and David A. Patterson,Computer Architecture: A Quantitative
Approach, 4th ed. San Francisco: Morgan Kaufmann Publishers, Inc., 2006.

[26] T. Chen, Z. Sura, K. M. O’Brien, and J. K. O’Brien, “Optimizing the use of
static buffers for dma on a cell chip,” inLCPC, ser. Lecture Notes in Computer
Science, G. Alḿasi, C. Cascaval, and P. Wu, Eds., vol. 4382. Springer, 2006, pp.
314–329. [Online]. Available: http://dx.doi.org/10.1007/978-3-540-72521-323

[27] Tao Liu and Haibo Lin and Tong Chen and Kevin O’Brien and Ling Shao, “DBDB:
optimizing DMATransfer for the cell be architecture,” inProceedings of the 23rd
international conference on Supercomputing, ICS 2009, Yorktown Heights, NY,
USA, June 8-12, 2009. ACM, 2009, pp. 36–45.

[28] J. E. Smith, “Decoupled access/execute computer architectures,” ACM Trans.
Comput. Syst., vol. 2, no. 4, pp. 289–308, 1984. [Online]. Available:
http://doi.acm.org/10.1145/357401.357403

[29] J. E. Smith, S. Weiss, and N. Y. Pang, “A simulation studyof decoupled
architecture computers,”IEEE Trans. Comput., vol. 35, no. 8, pp. 692–702, 1986.
[Online]. Available: http://dx.doi.org/10.1109/TC.1986.1676820

116

[30] G. Gan, X. Wang, J. Manzano, and G. R. Gao, “Tile Percolation: an
OpenMP Tile Aware Parallelization Technique for the Cyclops-64 Multicore
Processor,” inEuro-Par 2009, Parallel Processing, 15th International Euro-Par
Conference, Delft, Netherlands, August 25 - August 28, 2009, Proceedings,
ser. Lecture Notes in Computer Science. Springer, 2009. [Online]. Available:
http://dx.doi.org/10.1007/1182328514

[31] G. Gan and J. Manzano, “TL-DAE: Thread-Level DecoupledAccess/Execution
for OpenMP on the Cyclops-64 Many-core Processor,” inLanguages and Compil-
ers for Parallel Computing, 22nd International Workshop, LCPC 2009, Newark,
Delaware, US, October 8-10, 2009, Revised Selected Papers, ser. Lecture Notes in
Computer Science. Springer, 2009.

[32] G. Gan, X. Wang, J. Manzano, and G. R. Gao, “Tile Reduction:the First Step
towards OpenMP Tile Aware Parallelization,” inLecture Notes in Computer Sci-
ence: OpenMP in a New Era of Parallelism, IWOMP’09, International Workshop
on OpenMP, ser. Lecture Notes in Computer Science. Springer Berlin / Heidel-
berg, 2009.

[33] “International Technology Roadmap for Semiconductors,” Oct 2007. [Online].
Available: http://www.itrs.net/Links/2007ITRS/Home2007.htm

[34] K. Krewell, “Best servers of 2004,”Microprocessor Report, Jan 2005.

[35] P. P. Gelsinger, “Microprocessors for the new millennium: Challenges, opportuni-
ties, and new frontiers,” inSolid-State Circuits Conference, 2001. Digest of Tech-
nical Papers. ISSCC. 2001 IEEE International. IEEE Computer Society Press,
2001, pp. 22–25.

[36] J. Li and J. F. Martinez, “Power-performance considerations of parallel computing
on chip multiprocessors,”ACM Trans. Archit. Code Optim., vol. 2, no. 4, pp.
397–422, 2005. [Online]. Available: http://doi.acm.org/10.1145/1113841.1113844

[37] T. Agerwala and S. Chatterjee, “Computer architecture: Challenges and
opportunities for the next decade,”IEEE Micro, vol. 25, no. 3, pp. 58–69, 2005.
[Online]. Available: http://dx.doi.org/10.1109/MM.2005.45

[38] D. M. Brooks, P. Bose, S. E. Schuster, H. Jacobson, P. N. Kudva,
A. Buyuktosunoglu, J.-D. Wellman, V. Zyuban, M. Gupta, and P.W. Cook,
“Power-aware microarchitecture: Design and modeling challenges for next-
generation microprocessors,”IEEE Micro, vol. 20, no. 6, pp. 26–44, 2000.
[Online]. Available: http://dx.doi.org/10.1109/40.888701

117

[39] W. A. Wulf and S. A. McKee, “Hitting the memory wall: implications of the
obvious,” SIGARCH Comput. Archit. News, vol. 23, no. 1, pp. 20–24, 1995.
[Online]. Available: http://doi.acm.org/10.1145/216585.216588

[40] S. A. McKee, “Reflections on the memory wall,” inCF ’04: Proceedings of the
1st conference on Computing frontiers. New York, NY, USA: ACM Press, 2004,
p. 162. [Online]. Available: http://doi.acm.org/10.1145/977091.977115

[41] C. Grassl, “Optimizing for performance on ibm power4 systems,” inThe 7th SCI-
COMP Meeting: IBM System Scientific User Group, 2003.

[42] K. I. Farkas, P. Chow, N. P. Jouppi, and Z. Vranesic, “The multicluster architecture:
reducing cycle time through partitioning,” inMICRO 30: Proceedings of the 30th
annual ACM/IEEE international symposium on Microarchitecture. Washington,
DC, USA: IEEE Computer Society, 1997, pp. 149–159.

[43] F. Li, C. Nicopoulos, T. Richardson, Y. Xie, V. Narayanan,and M. Kandemir,
“Design and management of 3d chip multiprocessors using network-in-memory,”
SIGARCH Comput. Archit. News, vol. 34, no. 2, pp. 130–141, 2006. [Online].
Available: http://doi.acm.org/10.1145/1150019.1136497

[44] N. Mitchell, L. Carter, J. Ferrante, and D. Tullsen, “ILPversus TLP on SMT,”
in Supercomputing ’99: Proceedings of the 1999 ACM/IEEE conference on
Supercomputing (CDROM). New York, NY, USA: ACM Press, 1999, p. 37.
[Online]. Available: http://doi.acm.org/10.1145/331532.331569

[45] P. Machanick, “How multithreading addresses the memory wall,” School of IT and
Electrical Engineering, University of Queensland,” Technical Report, 2002.

[46] J. Clabes, J. Friedrich, M. Sweet, J. DiLullo, S. Chu, D. Plass, J. Dawson,
P. Muench, L. Powell, M. Floyd, B. Sinharoy, M. Lee, M. Goulet,J. Wagoner,
N. Schwartz, S. Runyon, G. Gorman, P. Restle, R. Kalla, J. McGill, and
S. Dodson, “Design and implementation of the POWER5 microprocessor,” in
DAC ’04: Proceedings of the 41st annual conference on Designautomation.
New York, NY, USA: ACM Press, 2004, pp. 670–672. [Online]. Available:
http://doi.acm.org/10.1145/996566.996749

[47] P. Kongetira, K. Aingaran, and K. Olukotun, “Niagara: A32-way multithreaded
sparc processor,”IEEE Micro, vol. 25, no. 2, pp. 21–29, 2005. [Online]. Available:
http://dx.doi.org/10.1109/MM.2005.35

[48] C. McNairy and R. Bhatia, “Montecito: A dual-core, dual-thread itanium
processor,”IEEE Micro, vol. 25, no. 2, pp. 10–20, 2005. [Online]. Available:
http://dx.doi.org/10.1109/MM.2005.34

118

[49] J. Held, J. Bautista, and S. Koehl, “From a few cores to many: A tera-scale com-
puting research overview,” Intel White Paper, 2006.

[50] ClearSpeed Technology, “CSX processor architecture whitepaper,” 2006.

[51] “NVIDIA CUDA Revolutionary GPU Computing,” Oct 2007. [Online]. Available:
http://developer.nvidia.com/object/cuda.html

[52] “ATI Radeon HD 2900 XT - Overview,” 2007. [Online]. Available: http:
//ati.amd.com/products/radeonhd2900/radeonhd2900xt/index.html

[53] S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V. Leung, J. MacKay,
M. Reif, L. Bao, J. Brown, M. Mattina, C.-C. Miao, C. Ramey, D. Wentzlaff,
W. Anderson, E. Berger, N. Fairbanks, D. Khan, F. Montenegro,J. Stickney,
and J. Zook, “Tile64 - processor: A 64-core soc with mesh interconnect,”
in Solid-State Circuits Conference, 2008. ISSCC 2008. Digest of Technical
Papers. IEEE International, Feb. 2008, pp. 88–598. [Online]. Available:
http://dx.doi.org/10.1109/ISSCC.2008.4523070

[54] L. Hammond and K. Olukotun, “Considerations in the design of hydra: A
multiprocessor-on-a-chip microarchitecture, Tech. Rep. CSL-TR-98-749, 1998.
[Online]. Available: citeseer.ist.psu.edu/hammond98considerations.html

[55] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. J. Dally, and M. Horowitz, “Smart
memories: a modular reconfigurable architecture,” inISCA ’00: Proceedings
of the 27th annual international symposium on Computer architecture. New
York, NY, USA: ACM Press, 2000, pp. 161–171. [Online]. Available:
http://doi.acm.org/10.1145/339647.339673

[56] C. E. Kozyrakis and D. Patterson, “A new direction for computer architecture re-
search,”IEEE Computer, vol. 30(9), 1997.

[57] M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat,B. Greenwald,
H. Hoffman, P. Johnson, J.-W. Lee, W. Lee, A. Ma, A. Saraf, M. Seneski,
N. Shnidman, V. Strumpen, M. Frank, S. Amarasinghe, and A. Agarwal, “The raw
microprocessor: A computational fabric for software circuits and general-purpose
programs,” IEEE Micro, vol. 22, no. 2, pp. 25–35, 2002. [Online]. Available:
http://dx.doi.org/10.1109/MM.2002.997877

[58] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee, J. Kim, M. Frank,
P. Finch, R. Barua, J. Babb, S. Amarasinghe, and A. Agarwal, “Baring it all to
software: Raw machines,”IEEE Computer, vol. 30(9), pp. 86–93, Sept. 1997.

119

[59] K. Sankaralingam, R. Nagarajan, R. McDonald, R. Desikan, S. Drolia, M. S.
Govindan, P. Gratz, D. Gulati, H. Hanson, C. Kim, H. Liu, N. Ranganathan,
S. Sethumadhavan, S. Sharif, P. Shivakumar, S. W. Keckler, and D. Burger,
“Distributed Microarchitectural Protocols in the TRIPS Prototype Processor,” in
MICRO 39: Proceedings of the 39th Annual IEEE/ACM International Symposium
on Microarchitecture. Washington, DC, USA: IEEE Computer Society, 2006,
pp. 480–491. [Online]. Available: http://dx.doi.org/10.1109/MICRO.2006.19

[60] J. Oliver, R. Rao, P. Sultana, J. Crandall, E. Czernikowski,L. W. J. IV, D. Franklin,
V. Akella, and F. T. Chong, “Synchroscalar: A multiple clock domain, power-
aware, tile-based embedded processor,” inISCA ’04: Proceedings of the 31st an-
nual international symposium on Computer architecture. Washington, DC, USA:
IEEE Computer Society, 2004, p. 150.

[61] G. R. Gao, “Programming and Compiling for TiNy Threads (TNT) – Experience
with Cyclops-64 Architecture,” Dec 2006.

[62] P. M. Kogge, “Past predictions, the present, and futuretrends,” Oct 2006.

[63] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey, S. Junkins,
A. Lake, J. Sugerman, R. Cavin, R. Espasa, E. Grochowski, T. Juan, and
P. Hanrahan, “Larrabee: a many-core x86 architecture for visual computing,”
ACM Trans. Graph., vol. 27, no. 3, pp. 1–15, 2008. [Online]. Available:
http://doi.acm.org/10.1145/1360612.1360617

[64] Khronos, “OpenCL - The open standard for parallel programming of
heterogeneous systems,” 2010. [Online]. Available: http://www.khronos.org/
opencl/

[65] Microsoft, “Example of DirectCompute for Next Generation Game Effects,”
2009. [Online]. Available: http://www.microsoft.com/showcase/en/us/details/
6ef116dc-b1d9-41db-8a7b-db1932ff72a5

[66] T. El-Ghazawi, W. Carlson, T. Sterling, and K. Yelick,UPC: Distributed Shared-
Memory Programming. Wiley-Interscience, 2003.

[67] A. E. Eichenberger, J. K. O’Brien, K. M. O’Brien, P. Wu, T. Chen, P. H. Oden,
D. A. Prener, J. C. Shepherd, B. So, Z. Sura, A. Wang, T. Zhang, P.Zhao, M. K.
Gschwind, R. Archambault, Y. Gao, and R. Koo, “Using advanced compiler tech-
nology to exploit the performance of the cell broadband enginetm architecture,”
IBM Syst. J., vol. 45, no. 1, pp. 59–84, 2006.

[68] A. E. Eichenberger, K. O’Brien, K. O’Brien, P. Wu, T. Chen, P. H. Oden,
D. A. Prener, J. C. Shepherd, B. So, Z. Sura, A. Wang, T. Zhang, P.Zhao,

120

and M. Gschwind, “Optimizing compiler for the cell processor,” in PACT ’05:
Proceedings of the 14th International Conference on Parallel Architectures and
Compilation Techniques. Washington, DC, USA: IEEE Computer Society, 2005,
pp. 161–172. [Online]. Available: http://dx.doi.org/10.1109/PACT.2005.33

[69] M. Kandemir and A. Choudhary, “Compiler-directed scratch pad memory
hierarchy design and management,” inDAC ’02: Proceedings of the 39th annual
Design Automation Conference. New York, NY, USA: ACM, 2002, pp. 628–633.
[Online]. Available: http://doi.acm.org/10.1145/513918.514077

[70] J. del Cuvillo, W. Zhu, Z. Hu, and G. R. Gao, “Fast: A functionally accurate sim-
ulation toolset for the cyclops-64 cellular architecture,” in Workshop on Modeling,
Benchmarking and Simulation (MoBS’05) of ISCA’05, Madison, Wisconsin, June
2005.

[71] ——, “TiNy Threads: A thread virtual machine for the Cyclops64 cellular archi-
tecture,” inFifth Workshop on Massively Parallel Processing, in conjuction with
19th International Parallel and Distributed Processing Symposium (IPDPS 2005),
Denver, Colorado, USA, April 2005, p. 265.

[72] J. del Cuvillo, W. Zhu, and G. Gao, “Landing openmp on cyclops-64: an efficient
mapping of openmp to a many-core system-on-a-chip,” inCF ’06: Proceedings of
the 3rd conference on Computing frontiers. New York, NY, USA: ACM, 2006,
pp. 41–50. [Online]. Available: http://doi.acm.org/10.1145/1128022.1128030

[73] E. Anderson, Z. Bai, J. Dongarra, A. Greenbaum, A. McKenney, J. D. Croz,
S. Hammerling, J. Demmel, C. Bischof, and D. Sorensen, “Lapack: a portable
linear algebra library for high-performance computers,” in Supercomputing ’90:
Proceedings of the 1990 conference on Supercomputing. Los Alamitos, CA, USA:
IEEE Computer Society Press, 1990, pp. 2–11.

[74] E. Anderson and J. J. Dongarra, “Evaluating block algorithm variants in
LAPACK,” LAPACK Working Note, Tech. Rep. 19, April 1990. [Online].
Available: http://www.netlib.org/lapack/lawnspdf/lawn19.pdf

[75] H. Ltaief, J. Kurzak, and J. Dongarra, “Parallel block hessenberg reduction
using algorithms-by-tiles for multicore architectures revisited,” LAPACK
Working Note, Tech. Rep. 208, August 2008. [Online]. Available: http:
//www.netlib.org/lapack/lawnspdf/lawn208.pdf

[76] M. S. Lam, E. E. Rothberg, and M. E. Wolf, “The cache performance and op-
timizations of blocked algorithms,” inProceedings of the Fourth International
Conference on Architectural Support for Programming Languages and Operating
Systems. Santa Clara, California: ACM SIGARCH, SIGPLAN, SIGOPS, and

121

the IEEE Computer Society, April 8–11, 1991, pp. 63–74,Computer Architecture
News,19(2), April 1991;Operating Systems Review, 25, April 1991;SIGPLAN
Notices,26(4), April 1991.

[77] A. Buttari, J. Langou, J. Kurzak, and J. J. Dongarra, “A class of
parallel tiled linear algebra algorithms for multicore architectures,” LAPACK
Working Note, Tech. Rep. 191, September 2007. [Online]. Available: http:
//www.netlib.org/lapack/lawnspdf/lawn191.pdf

[78] J. J. Dongarra, I. S. Duff, D. C. Sorensen, and H. A. van derVorst, Numerical
Linear Algebra for High-Performance Computers. Philadelphia: Society for In-
dustrial and Applied Mathematics, 1998.

[79] T. Chen, T. Zhang, Z. Sura, and M. G. Tallada, “Prefetching irregular
references for software cache on cell,” inCGO ’08: Proceedings of the
sixth annual IEEE/ACM international symposium on Code generation and
optimization. New York, NY, USA: ACM, 2008, pp. 155–164. [Online].
Available: http://doi.acm.org/10.1145/1356058.1356079

[80] T. Chen, H. Lin, and T. Zhang, “Orchestrating data transfer for the cell/b.e.
processor,” inICS ’08: Proceedings of the 22nd annual international conference
on Supercomputing. New York, NY, USA: ACM, 2008, pp. 289–298. [Online].
Available: http://doi.acm.org/10.1145/1375527.1375570

[81] J. Lee, S. Seo, C. Kim, J. Kim, P. Chun, Z. Sura, J. Kim, and S.Han, “Comic:
a coherent shared memory interface for cell be,” inPACT ’08: Proceedings
of the 17th international conference on Parallel architectures and compilation
techniques. New York, NY, USA: ACM, 2008, pp. 303–314. [Online]. Available:
http://doi.acm.org/10.1145/1454115.1454157

[82] D. Tarditi, S. Puri, and J. Oglesby, “Accelerator: using data parallelism to
program gpus for general-purpose uses,” inASPLOS-XII: Proceedings of the 12th
international conference on Architectural support for programming languages and
operating systems. New York, NY, USA: ACM, 2006, pp. 325–335. [Online].
Available: http://doi.acm.org/10.1145/1168857.1168898

[83] K. Kusano, S. Satoh, and M. Sato, “Performance evaluation of the omni openmp
compiler,” in ISHPC ’00: Proceedings of the Third International Symposium on
High Performance Computing. London, UK: Springer-Verlag, 2000, pp. 403–
414.

[84] J. del Cuvillo, “Breaking away from the os shadow: a program execution model
aware thread virtual machine for multicore architectures,” Ph.D. dissertation,
Newark, DE, USA, 2008, chair-Guang R. Gao.

122

[85] M. M. Baskaran, U. Bondhugula, S. Krishnamoorthy, J. Ramanujam, A. Rountev,
and P. Sadayappan, “Automatic data movement and computation mapping for
multi-level parallel architectures with explicitly managed memories,” inPPoPP
’08: Proceedings of the 13th ACM SIGPLAN Symposium on Principles and
practice of parallel programming. New York, NY, USA: ACM, 2008, pp. 1–10.
[Online]. Available: http://doi.acm.org/10.1145/1345206.1345210

[86] I. E. Venetis and G. R. Gao, “Mapping the lu decompositionon a many-core
architecture: challenges and solutions,” inCF ’09: Proceedings of the 6th ACM
conference on Computing frontiers. New York, NY, USA: ACM, 2009, pp.
71–80. [Online]. Available: http://doi.acm.org/10.1145/1531743.1531756

[87] Michael Kistler and Michael Perrone and Fabrizio Petrini, “Cell multiprocessor
communication network: Built for speed,”IEEE Micro, vol. 26, no. 3, pp. 10–23,
2006. [Online]. Available: http://dx.doi.org/10.1109/MM.2006.49

[88] Tong Chen and Haibo Lin and Tao Zhang, “Orchestrating data transfer for the
cell/B.E. processor,” inProceedings of the 22nd Annual International Conference
on Supercomputing, ICS 2008, Island of Kos, Greece, June 7-12, 2008. ACM,
2008, pp. 289–298.

[89] R. D. Blumofe and C. E. Leiserson, “Scheduling multithreaded computations by
work stealing,” inProceedings of the 35th Annual Symposium on Foundations of
Computer Science. Santa Fe, New Mexico: IEEE, November 20–22, 1994, pp.
356–368.

[90] The NANOS Group at Universitat Politécnica de Catalunya, “Barcelona OpenMP
Task Suite,” May 2009, http://nanos.ac.upc.edu/content/barcelona-openmp-task-
suite.

[91] E. Ayguad́e, N. Copty, A. Duran, J. Hoeflinger, Y. Lin, F. Massaioli, X. Teruel,
P. Unnikrishnan, and G. Zhang, “The design of openmp tasks,”IEEE Trans. Paral-
lel Distrib. Syst., vol. 20, no. 3, pp. 404–418, 2009.

[92] Ge Gan, Xu Wang, Joseph Manzano, Guang R. Gao, “Tile percolation: an openmp
tile aware parallelization technique for the cyclops-64 multicore processor,” in
Euro-Par 2009, Parallel Processing, 15th International Euro-Par Conference,
Delft, Netherlands, August 25 - August 28, 2009, Proceedings, 2009. [Online].
Available: http://dx.doi.org/10.1007/1182328514

[93] M. T. Kandemir, J. Ramanujam, M. J. Irwin, N. Vijaykrishnan, I. Kadayif,
and A. Parikh, “A compiler-based approach for dynamically managing scratch-
pad memories in embedded systems,”IEEE Trans. on CAD of Integrated

123

Circuits and Systems, vol. 23, no. 2, pp. 243–260, 2004. [Online]. Available:
http://doi.ieeecomputersociety.org/10.1109/TCAD.2003.822123

[94] M. E. Wolf and M. S. Lam, “A loop transformation theory and an algorithm to
maximize parallelism,”IEEE Transactions on Parallel and Distributed Systems,
vol. 2, no. 4, pp. 452–471, October 1991.

[95] J. M. Anderson, S. P. Amarasinghe, and M. S. Lam, “Data and computation trans-
formations for multiprocessors,” inProceedings of the Fifth ACM SIGPLAN Sym-
posium on Principles & Practice of Parallel Programming, Santa Barbara, Califor-
nia, July 19–21, 1995, pp. 166–178,SIGPLAN Notices,30(8), August 1995.

[96] S. S. Muchnick,Advanced compiler design and implementation. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 1997.

[97] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran,“Cache-oblivious
algorithms,” inFOCS ’99: Proceedings of the 40th Annual Symposium on Foun-
dations of Computer Science. Washington, DC, USA: IEEE Computer Society,
1999, p. 285.

[98] L. Kurian, P. T. Hulina, and L. D. Coraor, “Memory latencyeffects in decoupled
architectures with a single data memory module,” inProceedings of the 19th An-
nual International Symposium on Computer Architecture. Gold Coast, Australia:
ACM SIGARCH and IEEE Computer Society, May 19–21, 1992, pp. 236–245,
Computer Architecture News,20(2), May 1992.

[99] M. Sung, R. Krashinsky, and K. Asanović, “Multithreading decoupled architec-
tures for complexity-effective general purpose computing,” SIGARCH Comput.
Archit. News, vol. 29, no. 5, pp. 56–61, 2001.

[100] M. N. Dorozhevets and P. Wolcott, “The el’brus-3 and mars-m: recent advances
in russian high-performance computing,”J. Supercomput., vol. 6, no. 1, pp. 5–48,
1992. [Online]. Available: http://dx.doi.org/10.1007/BF00128641

[101] M. N. Dorojevets and V. G. Oklobdzija, “Multithreadeddecoupled architecture,”
International Journal of High Speed Computing, vol. 7, no. 3, pp. 465–480, 1995.

[102] J. G. Steffan, C. B. Colohan, A. Zhai, and T. C. Mowry, “A scalable approach to
thread-level speculation,” inProceedings of the 27th Annual International Sympo-
sium on Computer Architecture. Vancouver, British Columbia: IEEE Computer
Society and ACM SIGARCH, June 12–14, 2000, pp. 1–12,Computer Architecture
News,28(2), May 2000.

124

[103] J.-M. Parcerisa and A. González, “Multithreaded decoupled access/execute proces-
sors,” Universitat Polit́ecnica de Catalunya, Departament dArquitectura de Com-
putadors, Technical Report UPC-DAC-1997-83, 1997.

[104] J.-M. Parcerisa and A. González, “The synergy of multithreading and ac-
cess/execute decoupling,” inProceedings of the Fifth International Symposium on
High-Performance Computer Architecture. Orlando, Florida: IEEE Computer
Society, January 9–13, 1999, pp. 59–63.

[105] Paraskevas Evripidou, “D3-machine: a decoupled data-driven multithreaded ar-
chitecture with variable resolution support,”Parallel Comput., vol. 27, no. 9, pp.
1196–1225, 2001.

[106] P. Evripidou and J.-L. Gaudiot, “The USC decoupled multilevel data-flow exe-
cution model,” inAdvanced Topics in Data-Flow Computing, J.-L. Gaudiot and
L. Bic, Eds. Englewood Cliffs, New Jersey: Prentice-Hall, 1991, ch. 13, pp.
347–379, book contains papers presented at the First Workshop on Data-Flow
Computing, held in conjunction with the 16th Annual International Symposium
on Computer Architecture in Eilat, Israel, May 1989.

[107] C.-K. Luk, “Tolerating memory latency through software-controlled pre-execution
in simultaneous multithreading processors,” inProceedings of the 28th Annual In-
ternational Symposium on Computer Architecture. Göteborg, Sweden: IEEE
Computer Society and ACM SIGARCH, June 30–July 4, 2001, pp. 40–51, Com-
puter Architecture News,29(2), May 2001.

[108] J. D. Collins, H. Wang, D. M. Tullsen, C. Hughes, Y.-F. Lee, D. Lavery, and
J. P. Shen, “Speculative precomputation: long-range prefetching of delinquent
loads,” in ISCA ’01: Proceedings of the 28th annual international symposium on
Computer architecture. New York, NY, USA: ACM, 2001, pp. 14–25. [Online].
Available: http://doi.acm.org/10.1145/379240.379248

[109] C. Zilles and G. Sohi, “Execution-based prediction using speculative slices,” in
Proceedings of the 28th Annual International Symposium on Computer Architec-
ture. Göteborg, Sweden: IEEE Computer Society and ACM SIGARCH, June
30–July 4, 2001, pp. 2–13,Computer Architecture News,29(2), May 2001.

[110] T. C. Mowry, M. S. Lam, and A. Gupta, “Design and evaluation of a compiler
algorithm for prefetching,” inASPLOS-V: Proceedings of the fifth international
conference on Architectural support for programming languages and operating
systems. New York, NY, USA: ACM, 1992, pp. 62–73. [Online]. Available:
http://doi.acm.org/10.1145/143365.143488

125

[111] D. Callahan, K. Kennedy, and A. Porterfield, “Software prefetching,” inASPLOS-
IV: Proceedings of the fourth international conference on Architectural support
for programming languages and operating systems. New York, NY, USA: ACM,
1991, pp. 40–52. [Online]. Available: http://doi.acm.org/10.1145/106972.106979

[112] A. Jacquet, V. Janot, C. Leung, G. R. Gao, R. Govindarajan,and T. L. Sterling,
“An executable analytical performance evaluation approach for early performance
prediction,” in17th International Parallel and Distributed Processing Symposium
(IPDPS 2003), 22-26 April 2003, Nice, France. IEEE Computer Society, 2003,
pp. 268–276.

[113] R. Rangan, N. Vachharajani, M. Vachharajani, and D. I. August, “Decoupled
software pipelining with the synchronization array,” inPACT ’04: Proceedings
of the 13th International Conference on Parallel Architectures and Compilation
Techniques. Washington, DC, USA: IEEE Computer Society, 2004, pp. 177–188.
[Online]. Available: http://dx.doi.org/10.1109/PACT.2004.14

[114] G. Ottoni, R. Rangan, A. Stoler, and D. I. August, “Automatic thread extraction
with decoupled software pipelining,” inMICRO 38: Proceedings of the 38th
annual IEEE/ACM International Symposium on Microarchitecture. Washington,
DC, USA: IEEE Computer Society, 2005, pp. 105–118. [Online]. Available:
http://dx.doi.org/10.1109/MICRO.2005.13

[115] J. M. Perez, P. Bellens, R. M. Badia, and J. Labarta, “Cellss: making it easier to
program the cell broadband engine processor,”IBM J. Res. Dev., vol. 51, no. 5, pp.
593–604, 2007.

[116] P. Bellens, J. M. Perez, R. M. Badia, and J. Labarta, “Cellss: a programming
model for the cell be architecture,” inSC ’06: Proceedings of the 2006 ACM/IEEE
conference on Supercomputing. New York, NY, USA: ACM, 2006, p. 86.
[Online]. Available: http://doi.acm.org/10.1145/1188455.1188546

[117] F. Irigoin and R. Triolet, “Supernode partitioning,” in Conference Record of the
Fifteenth Annual ACM Symposium on Principles of ProgrammingLanguages. San
Diego, California: ACM SIGACT and SIGPLAN, January 13–15, 1988, pp. 319–
329.

[118] J. M. Anderson and M. S. Lam, “Global optimizations forparallelism and locality
on scalable parallel machines,” inProceedings of the ACM SIGPLAN ’93 Confer-
ence on Programming Language Design and Implementation, Albuquerque, New
Mexico, June 23–25, 1993, pp. 112–125,SIGPLAN Notices,28(6), June 1993.

126

[119] A. W. Lim, S.-W. Liao, and M. S. Lam, “Blocking and array constraction across
arbitrarily nested loops using affine partitioning,” inPPoPP’01, Snowbird, Utah,
USA, June 2001.

[120] M. E. Wolf and M. S. Lam, “A data locality optimizing algorithm,” in Proceedings
of the ACM SIGPLAN ’91 Conference on Programming Language Design and Im-
plementation, Toronto, Ontario, June 26–28, 1991, pp. 30–44,SIGPLAN Notices,
26(6), June 1991.

[121] A. W. Lim and M. S. Lam, “Communication-free parallelization via affine trans-
formations,” inProceedings of the 7th International Workshop on Languagesand
Compilers for Parallel Computing, ser. Lecture Notes in Computer Science, K. Pin-
gali, U. Banerjee, D. Gelernter, A. Nicolau, and D. Padua, Eds., no. 892. Ithaca,
New York: Springer-Verlag, August 8–10, 1994, pp. 92–106.

[122] High Performance Fortran Forum, “High-performance fortran language specifica-
tion version 2.0,” Rice University,” Technical Report, 1997.

[123] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu,
C. von Praun, and V. Sarkar, “X10: an object-oriented approach to non-uniform
cluster computing,” inOOPSLA ’05: Proceedings of the 20th annual ACM
SIGPLAN conference on Object oriented programming, systems, languages,
and applications. New York, NY, USA: ACM, 2005, pp. 519–538. [Online].
Available: http://doi.acm.org/10.1145/1094811.1094852

[124] S. J. Deitz, “High-level programming language abstractions for advanced and dy-
namic parallel computations,” Ph.D. dissertation, Seattle, WA, USA, 2005, chair-
Lawrence Snyder.

[125] Y. Dotsenko, C. Coarfa, and J. Mellor-Crummey, “A multi-platform co-array
fortran compiler,” in PACT ’04: Proceedings of the 13th International
Conference on Parallel Architectures and Compilation Techniques. Washington,
DC, USA: IEEE Computer Society, 2004, pp. 29–40. [Online]. Available:
http://dx.doi.org/10.1109/PACT.2004.3

[126] P. N. Hilfinger, D. Bonachea, D. Gay, S. Graham, B. Liblit,G. Pike, and K. Yelick,
“Titanium language reference manual,” Berkeley, CA, USA, Tech. Rep., 2001.

[127] J. Guo, G. Bikshandi, B. B. Fraguela, M. J. Garzaran, and D.Padua,
“Programming with tiles,” in PPoPP ’08: Proceedings of the 13th ACM
SIGPLAN Symposium on Principles and practice of parallel programming.
New York, NY, USA: ACM, 2008, pp. 111–122. [Online]. Available:
http://doi.acm.org/10.1145/1345206.1345225

127

[128] UPC Consortium, “UPC Collective Operations Specifications V1.0 A publication
of the UPC Consortium,” 2003.

[129] M. P. I. Forum, “MPI: A message-passing interface standard (version 1.0),” Tech.
Rep., May 1994, uRL http://www.mcs.anl.gov/mpi/mpi-report.ps.

[130] S. J. Deitz, B. L. Chamberlain, S.-E. Choi, and L. Snyder, “The design and
implementation of a parallel array operator for the arbitrary remapping of data,”
in PPoPP ’03: Proceedings of the ninth ACM SIGPLAN symposium on Principles
and practice of parallel programming. New York, NY, USA: ACM, 2003, pp.
155–166. [Online]. Available: http://doi.acm.org/10.1145/781498.781526

[131] S. J. Deitz, B. L. Chamberlain, and L. Snyder, “High-level language support
for user-defined reductions,”J. Supercomput., vol. 23, no. 1, pp. 23–37, 2002.
[Online]. Available: http://dx.doi.org/10.1023/A:1015781018449

[132] G. Viswanathan and J. R. Larus, “User-defined reductions for efficient commu-
nication in data-parallel languages,” University of Wisconsin-Madison, Technical
Report 1293, Jan 1996.

[133] S.-B. Scholz, “On defining application-specific high-level array operations by
means of shape-invariant programming facilities,” inAPL ’98: Proceedings of the
APL98 conference on Array processing language. New York, NY, USA: ACM,
1998, pp. 32–38. [Online]. Available: http://doi.acm.org/10.1145/327559.327613

[134] P. Kambadur, D. Gregor, and A. Lumsdaine, “Openmp extensions for generic
libraries,” in Lecture Notes in Computer Science: OpenMP in a New Era of
Parallelism, IWOMP’08, International Workshop on OpenMP, vol. 5004/2008.
Springer Berlin / Heidelberg, 2008, pp. 123–133.

[135] J. Gummaraju and M. Rosenblum, “Stream programming on general-purpose
processors,” inMICRO 38: Proceedings of the 38th annual IEEE/ACM
International Symposium on Microarchitecture. Washington, DC, USA:
IEEE Computer Society, 2005, pp. 343–354. [Online]. Available: http:
//dx.doi.org/10.1109/MICRO.2005.32

128

